wav2vec2-xlsr-53-espeak-cv-ft-intent-classification-ori

This model is a fine-tuned version of facebook/wav2vec2-xlsr-53-espeak-cv-ft on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9124
  • Accuracy: 0.625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1894 1.0 14 2.1812 0.3333
2.1795 2.0 28 2.1553 0.3333
2.144 3.0 42 2.1066 0.3333
2.1175 4.0 56 2.0283 0.3542
2.0542 5.0 70 1.9253 0.3958
2.0007 6.0 84 1.8468 0.4167
1.8891 7.0 98 1.7655 0.4583
1.8484 8.0 112 1.6695 0.4792
1.8256 9.0 126 1.5920 0.5
1.6832 10.0 140 1.5331 0.5
1.6149 11.0 154 1.4763 0.5
1.5853 12.0 168 1.4453 0.5
1.4357 13.0 182 1.3588 0.5
1.4789 14.0 196 1.3238 0.4792
1.3886 15.0 210 1.2822 0.4792
1.313 16.0 224 1.2609 0.5
1.3559 17.0 238 1.2191 0.5208
1.1937 18.0 252 1.1936 0.5
1.1847 19.0 266 1.1547 0.5417
1.197 20.0 280 1.1390 0.5417
1.1057 21.0 294 1.1310 0.5208
1.0291 22.0 308 1.1086 0.5417
1.0768 23.0 322 1.1075 0.5417
1.0249 24.0 336 1.0654 0.5625
1.0433 25.0 350 1.0390 0.5625
0.9974 26.0 364 1.0086 0.6458
0.9578 27.0 378 0.9939 0.625
0.916 28.0 392 0.9938 0.625
0.9187 29.0 406 0.9843 0.625
0.8759 30.0 420 0.9755 0.625
0.9199 31.0 434 0.9822 0.6042
0.8791 32.0 448 0.9522 0.6458
0.8436 33.0 462 0.9414 0.6458
0.8692 34.0 476 0.9510 0.625
0.8201 35.0 490 0.9208 0.6667
0.8284 36.0 504 0.9398 0.6458
0.8761 37.0 518 0.9438 0.6458
0.7948 38.0 532 0.9253 0.6667
0.8339 39.0 546 0.9250 0.6458
0.8002 40.0 560 0.9145 0.6458
0.7791 41.0 574 0.9062 0.6667
0.7944 42.0 588 0.9077 0.6667
0.7777 43.0 602 0.9069 0.6458
0.7943 44.0 616 0.9118 0.625
0.7573 45.0 630 0.9124 0.625

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
160
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.