metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_ndcg@80
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1496
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
We are currently involved in, and may in the future be involved in, legal
proceedings, claims, and government investigations in the ordinary course
of business. These include proceedings, claims, and investigations
relating to, among other things, regulatory matters, commercial matters,
intellectual property, competition, tax, employment, pricing,
discrimination, consumer rights, personal injury, and property rights.
sentences:
- >-
What factors does the regulatory authority consider when ensuring data
protection in cross border transfers in Zimbabwe?
- >-
How does Securiti enable enterprises to safely use data and the cloud
while managing security, privacy, and compliance risks?
- What types of legal issues is the company currently involved in?
- source_sentence: >-
The Company’s minority market share in the global smartphone, personal
computer and tablet markets can make developers less inclined to develop
or upgrade software for the Company’s products and more inclined to devote
their resources to developing and upgrading software for competitors’
products with larger market share. When developers focus their efforts on
these competing platforms, the availability and quality of applications
for the Company’s devices can suffer.
sentences:
- What is the role of obtaining consent in Thailand's PDPA?
- >-
Why might developers be less inclined to develop or upgrade software for
the Company's products?
- >-
What caused the increase in energy generation and storage segment
revenue in 2023?
- source_sentence: >-
** : EMEA (Europe, the Middle East and Africa) The Irish DPA implements
the GDPR into the national law by incorporating most of the provisions of
the GDPR with limited additions and deletions. It contains several
provisions restricting data subjects’ rights that they generally have
under the GDPR, for example, where restrictions are necessary for the
enforcement of civil law claims. Resources* : Irish DPA Overview Irish
Cookie Guidance ### Japan #### Japan’s Act on the Protection of Personal
Information (APPI) **Effective Date (Amended APPI)** : April 01, 2022
**Region** : APAC (Asia-Pacific) Japan’s APPI regulates personal related
information and applies to any Personal Information Controller (the
“PIC''), that is a person or entity providing personal related information
for use in business in Japan. The APPI also applies to the foreign
sentences:
- >-
What are the requirements for CIIOs and personal information processors
in the state cybersecurity department regarding cross-border data
transfers and certifications?
- How does the Irish DPA implement the GDPR into national law?
- >-
What is the current status of the Personal Data Protection Act in El
Salvador compared to Monaco and Venezuela?
- source_sentence: >-
View Salesforce View Workday View GCP View Azure View Oracle View US
California CCPA View US California CPRA View European Union GDPR View
Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View
\+ More View Privacy View Security View Governance View Marketing View
Resources Blog View Collateral View Knowledge Center View Securiti
Education View Company About Us View Partner Program View Contact Us View
News Coverage
sentences:
- >-
What is the role of ANPD in ensuring LGPD compliance and protecting data
subject rights, including those related to health professionals?
- >-
According to the Spanish data protection law, who is required to hire a
DPO if they possess certain information in the event of a data breach?
- >-
What is GCP and how does it relate to privacy, security, governance,
marketing, and resources?
- source_sentence: >-
vital interests of the data subject; Complying with an obligation
prescribed in PDPL, not being a contractual obligation, or complying with
an order from a competent court, the Public Prosecution, the investigation
Judge, or the Military Prosecution; or Preparing or pursuing a legal claim
or defense. vs Articles: 44 50, Recitals: 101, 112 GDPR states that
personal data shall be transferred to a third country or international
organization with an adequate protection level as determined by the EU
Commission. Suppose there is no decision on an adequate protection level.
In that case, a transfer is only permitted when the data controller or
data processor provides appropriate safeguards that ensure data subject
rights. Appropriate safeguards include: BCRs with specific requirements
(e.g., a legal basis for processing, a retention period, and complaint
procedures) Standard data protection clauses adopted by the EU
Commission, level of protection. If there is no adequate level of
protection, then data controllers in Turkey and abroad shall commit, in
writing, to provide an adequate level of protection abroad, as well as
agree on the fact that the transfer is permitted by the Board of KVKK. vs
Articles 44 50 Recitals 101, 112 GDPR states that personal data shall be
transferred to a third country or international organization with an
adequate protection level as determined by the EU Commission. Suppose
there is no decision on an adequate protection level. In that case, a
transfer is only permitted when the data controller or data processor
provides appropriate safeguards that ensure data subject' rights.
Appropriate safeguards include: BCRs with specific requirements (e.g., a
legal basis for processing, a retention period, and complaint procedures);
standard data protection clauses adopted by the EU Commission or by a
supervisory authority; an approved code
sentences:
- What is the right to be informed in relation to personal data?
- >-
In what situations can a controller process personal data to protect
vital interests?
- >-
What obligations in PDPL must data controllers or processors meet to
protect personal data transferred to a third country or international
organization?
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.4020618556701031
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5773195876288659
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6804123711340206
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7938144329896907
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4020618556701031
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1924398625429553
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1360824742268041
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07938144329896907
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4020618556701031
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5773195876288659
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6804123711340206
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7938144329896907
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5832092053824987
name: Cosine Ndcg@10
- type: cosine_ndcg@80
value: 0.6222698401457883
name: Cosine Ndcg@80
- type: cosine_mrr@10
value: 0.5174930453280969
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5253009685878662
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.41237113402061853
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5670103092783505
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6597938144329897
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7938144329896907
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.41237113402061853
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18900343642611683
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1319587628865979
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07938144329896907
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.41237113402061853
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5670103092783505
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6597938144329897
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7938144329896907
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5860165941440372
name: Cosine Ndcg@10
- type: cosine_ndcg@80
value: 0.6252535691605303
name: Cosine Ndcg@80
- type: cosine_mrr@10
value: 0.5218622156766489
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5297061448856729
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.41237113402061853
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5979381443298969
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6494845360824743
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7628865979381443
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.41237113402061853
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1993127147766323
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12989690721649483
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07628865979381441
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.41237113402061853
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5979381443298969
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6494845360824743
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7628865979381443
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5782766042135054
name: Cosine Ndcg@10
- type: cosine_ndcg@80
value: 0.6240012013315989
name: Cosine Ndcg@80
- type: cosine_mrr@10
value: 0.5207167403043692
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5307304570652817
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-3-v23")
# Run inference
sentences = [
"vital interests of the data subject; Complying with an obligation prescribed in PDPL, not being a contractual obligation, or complying with an order from a competent court, the Public Prosecution, the investigation Judge, or the Military Prosecution; or Preparing or pursuing a legal claim or defense. vs Articles: 44 50, Recitals: 101, 112 GDPR states that personal data shall be transferred to a third country or international organization with an adequate protection level as determined by the EU Commission. Suppose there is no decision on an adequate protection level. In that case, a transfer is only permitted when the data controller or data processor provides appropriate safeguards that ensure data subject rights. Appropriate safeguards include: BCRs with specific requirements (e.g., a legal basis for processing, a retention period, and complaint procedures) Standard data protection clauses adopted by the EU Commission, level of protection. If there is no adequate level of protection, then data controllers in Turkey and abroad shall commit, in writing, to provide an adequate level of protection abroad, as well as agree on the fact that the transfer is permitted by the Board of KVKK. vs Articles 44 50 Recitals 101, 112 GDPR states that personal data shall be transferred to a third country or international organization with an adequate protection level as determined by the EU Commission. Suppose there is no decision on an adequate protection level. In that case, a transfer is only permitted when the data controller or data processor provides appropriate safeguards that ensure data subject' rights. Appropriate safeguards include: BCRs with specific requirements (e.g., a legal basis for processing, a retention period, and complaint procedures); standard data protection clauses adopted by the EU Commission or by a supervisory authority; an approved code",
'What obligations in PDPL must data controllers or processors meet to protect personal data transferred to a third country or international organization?',
'In what situations can a controller process personal data to protect vital interests?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4021 |
cosine_accuracy@3 | 0.5773 |
cosine_accuracy@5 | 0.6804 |
cosine_accuracy@10 | 0.7938 |
cosine_precision@1 | 0.4021 |
cosine_precision@3 | 0.1924 |
cosine_precision@5 | 0.1361 |
cosine_precision@10 | 0.0794 |
cosine_recall@1 | 0.4021 |
cosine_recall@3 | 0.5773 |
cosine_recall@5 | 0.6804 |
cosine_recall@10 | 0.7938 |
cosine_ndcg@10 | 0.5832 |
cosine_ndcg@80 | 0.6223 |
cosine_mrr@10 | 0.5175 |
cosine_map@100 | 0.5253 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4124 |
cosine_accuracy@3 | 0.567 |
cosine_accuracy@5 | 0.6598 |
cosine_accuracy@10 | 0.7938 |
cosine_precision@1 | 0.4124 |
cosine_precision@3 | 0.189 |
cosine_precision@5 | 0.132 |
cosine_precision@10 | 0.0794 |
cosine_recall@1 | 0.4124 |
cosine_recall@3 | 0.567 |
cosine_recall@5 | 0.6598 |
cosine_recall@10 | 0.7938 |
cosine_ndcg@10 | 0.586 |
cosine_ndcg@80 | 0.6253 |
cosine_mrr@10 | 0.5219 |
cosine_map@100 | 0.5297 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4124 |
cosine_accuracy@3 | 0.5979 |
cosine_accuracy@5 | 0.6495 |
cosine_accuracy@10 | 0.7629 |
cosine_precision@1 | 0.4124 |
cosine_precision@3 | 0.1993 |
cosine_precision@5 | 0.1299 |
cosine_precision@10 | 0.0763 |
cosine_recall@1 | 0.4124 |
cosine_recall@3 | 0.5979 |
cosine_recall@5 | 0.6495 |
cosine_recall@10 | 0.7629 |
cosine_ndcg@10 | 0.5783 |
cosine_ndcg@80 | 0.624 |
cosine_mrr@10 | 0.5207 |
cosine_map@100 | 0.5307 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,496 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 67 tokens
- mean: 216.99 tokens
- max: 512 tokens
- min: 10 tokens
- mean: 21.6 tokens
- max: 102 tokens
- Samples:
positive anchor Leader in Data Privacy View Events Spotlight Talks Education Contact Us Schedule a Demo Products By Use Cases By Roles Data Command Center View Learn more Asset and Data Discovery Discover dark and native data assets Learn more Data Access Intelligence & Governance Identify which users have access to sensitive data and prevent unauthorized access Learn more Data Privacy Automation PrivacyCenter.Cloud
Data Mapping data subject must be notified of any such extension within one month of receiving the request, along with the reasons for the delay and the possibility of complaining to the supervisory authority. The right to restrict processing applies when the data subject contests data accuracy, the processing is unlawful, and the data subject opposes erasure and requests restriction. The controller must inform data subjects before any such restriction is lifted. Under GDPR, the data subject also has the right to obtain from the controller the rectification of inaccurate personal data and to have incomplete personal data completed. Article: 22 Under PDPL, if a decision is based solely on automated processing of personal data intended to assess the data subject regarding his/her performance at work, financial standing, credit-worthiness, reliability, or conduct, then the data subject has the right to request processing in a manner that is not solely automated. This right shall not apply where the decision is taken in the course of entering into
What is the requirement for notifying the data subject of any extension under GDPR and PDPL?
Automation PrivacyCenter.Cloud
Data Mapping - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|
0.2128 | 10 | 3.8486 | - | - | - |
0.4255 | 20 | 2.3622 | - | - | - |
0.6383 | 30 | 2.3216 | - | - | - |
0.8511 | 40 | 1.3247 | - | - | - |
1.0 | 47 | - | 0.5307 | 0.5297 | 0.5253 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}