metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1872
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
The Secretary of Health and Human.pathname_key_services may issue an
Emergency Use Authorization (EUA) to authorize unapproved medical
products, or unapproved uses of approved medical products, to be
manufactured, marketed, and sold in the context of an actual or potential
emergency designated by the government.
sentences:
- >-
What was the aggregate intrinsic value of exercised stock options as of
December 30, 2023?
- >-
What are some of the regulations related to data breach impact analysis
and response?
- >-
What does the Emergency Use Authorization (EUA) by the U.S. Secretary of
Health and Human Services allow?
- source_sentence: >-
the Virginia Consumer Data Protection Act protect consumers? The Virginia
Consumer Data Protection Act protects consumers by prohibiting deceptive
and unfair trade practices, giving consumers the right to sue for damages,
and providing a mechanism for enforcement against businesses engaging in
such practices. ## Join Our Newsletter Get all the latest information, law
updates and more delivered to your inbox ### Share Copy 54 ### More
Stories that May Interest You View More September 21, 2023 ## Navigating
Generative AI Privacy Challenges & Safeguarding Tips Introduction The
emergence of Generative AI has ushered in a new era of innovation in the
ever-evolving technological landscape that pushes the boundaries of...
View More September 13, 2023 ## Kuwait's DPPR Kuwait didn’t have any data
protection law until the Communication and Information Technology
Regulatory Authority (CITRA) introduced the Data Privacy Protection
Regulation
sentences:
- >-
What is Securiti's mission and history regarding Italy's GDPR
implementation and compliance?
- Which states have enacted data privacy laws like the VCDPA?
- >-
How does the Virginia Consumer Data Protection Act protect consumers and
how is this protection enforced?
- source_sentence: >-
Data Flow Intelligence & Governance Prevent sensitive data sprawl through
real-time streaming platforms Learn more Data Consent Automation First
Party Consent | Third Party & Cookie Consent Learn more Data Security
Posture Management Secure sensitive data in hybrid multicloud and SaaS
environments Learn more Data Breach Impact Analysis & Response Analyze
impact of a data breach and coordinate response per global regulatory
obligations Learn more Data Catalog Automatically catalog datasets and
enable users to find, understand, trust and access data Learn more Data
Lineage Track changes and transformations of data throughout its lifecycle
Data Controls Orchestrator View Data Command Center View Sensitive Data
Intelligence View Asset Discovery Data Discovery & Classification
Sensitive Data Catalog People Data Graph Learn more Privacy , Sensitive
Data Intelligence Discover & Classify Structured and Unstructured Data |
People Data Graph Learn more Data Flow Intelligence & Governance Prevent
sensitive data sprawl through real-time streaming platforms Learn more
Data Consent Automation First Party Consent | Third Party & Cookie Consent
Learn more Data Security Posture Management Secure sensitive data in
hybrid multicloud and SaaS environments Learn more Data Breach Impact
Analysis & Response Analyze impact of a data breach and coordinate
response per global regulatory obligations Learn more Data Catalog
Automatically catalog datasets and enable users to find, understand, trust
and access data Learn more Data Lineage Track changes and transformations
of data throughout its lifecycle Data Controls Orchestrator View Data
Command Center View Sensitive Data Intelligence View
sentences:
- >-
Why is it important to manage security of sensitive data in hybrid
multicloud and SaaS environments, prevent data sprawl, and analyze the
impact of data breaches?
- >-
What right does the consumer have regarding their personal data in terms
of deletion?
- What is the legal basis for the LGPD in Brazil?
- source_sentence: >-
its lifecycle Data Controls Orchestrator View Data Command Center View
Sensitive Data Intelligence View Asset Discovery Data Discovery &
Classification Sensitive Data Catalog People Data Graph Learn more Privacy
Automate compliance with global privacy regulations Data Mapping
Automation View Data Subject Request Automation View People Data Graph
View Assessment Automation View Cookie Consent View Universal Consent View
Vendor Risk Assessment View Breach Management View Privacy Policy
Management View Privacy Center View Learn more Security Identify data risk
and enable protection & control Data Security Posture Management View Data
Access Intelligence & Governance View Data Risk Management View
sentences:
- >-
What is ANPD's primary goal regarding LGPD and its rights and
regulations?
- >-
What options are there for joining the Securiti team and expanding
knowledge in data privacy, security, and governance?
- >-
How does the Data Controls Orchestrator help automate compliance with
global privacy regulations?
- source_sentence: >-
remediate the incident, promptly notify relevant individuals, and report
such data security incidents to the regulatory department(s). Thus, you
should have a robust security breach response mechanism in place. ## 7\.
Cross border data transfer and data localization requirements: Under DSL,
Critical Information Infrastructure Operators are required to store the
important data in the territory of China and cross-border transfer is
regulated by the CSL. CIIOs need to conduct a security assessment in
accordance with the measures jointly defined by CAC and the relevant
departments under the State Council for the cross-border transfer of
important data for business necessity. For non Critical Information
Infrastructure operators, the important data cross-border transfer will be
regulated by the measures announced by the Cyberspace Administration of
China (CAC) and other authorities. However, those “measures” have still
not yet been released. DSL also intends to establish a data national
security review and export control system to restrict the cross-border
transmission of data
sentences:
- >-
What are the requirements for storing important data in the territory of
China under DSL?
- >-
How does behavioral targeting relate to the processing of personal data
under Bahrain PDPL?
- >-
What is the margin of error generally estimated for worldwide Monthly
Active People (MAP)?
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.27835051546391754
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5463917525773195
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6494845360824743
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7835051546391752
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.27835051546391754
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18213058419243983
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12989690721649483
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07835051546391751
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.27835051546391754
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5463917525773195
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6494845360824743
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7835051546391752
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5204365648204007
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4373834069710358
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.44377152224424676
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.28865979381443296
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5463917525773195
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6597938144329897
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7731958762886598
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.28865979381443296
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18213058419243983
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1319587628865979
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07731958762886597
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.28865979381443296
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5463917525773195
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6597938144329897
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7731958762886598
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5234913842554121
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4444403534609721
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.45150068207403454
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.26804123711340205
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4845360824742268
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6494845360824743
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7628865979381443
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.26804123711340205
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16151202749140892
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12989690721649483
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07628865979381441
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.26804123711340205
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4845360824742268
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6494845360824743
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7628865979381443
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4964329019488686
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4132302405498282
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.41983416368750226
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v18")
# Run inference
sentences = [
'remediate the incident, promptly notify relevant individuals, and report such data security incidents to the regulatory department(s). Thus, you should have a robust security breach response mechanism in place. ## 7\\. Cross border data transfer and data localization requirements: Under DSL, Critical Information Infrastructure Operators are required to store the important data in the territory of China and cross-border transfer is regulated by the CSL. CIIOs need to conduct a security assessment in accordance with the measures jointly defined by CAC and the relevant departments under the State Council for the cross-border transfer of important data for business necessity. For non Critical Information Infrastructure operators, the important data cross-border transfer will be regulated by the measures announced by the Cyberspace Administration of China (CAC) and other authorities. However, those “measures” have still not yet been released. DSL also intends to establish a data national security review and export control system to restrict the cross-border transmission of data',
'What are the requirements for storing important data in the territory of China under DSL?',
'What is the margin of error generally estimated for worldwide Monthly Active People (MAP)?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2784 |
cosine_accuracy@3 | 0.5464 |
cosine_accuracy@5 | 0.6495 |
cosine_accuracy@10 | 0.7835 |
cosine_precision@1 | 0.2784 |
cosine_precision@3 | 0.1821 |
cosine_precision@5 | 0.1299 |
cosine_precision@10 | 0.0784 |
cosine_recall@1 | 0.2784 |
cosine_recall@3 | 0.5464 |
cosine_recall@5 | 0.6495 |
cosine_recall@10 | 0.7835 |
cosine_ndcg@10 | 0.5204 |
cosine_mrr@10 | 0.4374 |
cosine_map@100 | 0.4438 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2887 |
cosine_accuracy@3 | 0.5464 |
cosine_accuracy@5 | 0.6598 |
cosine_accuracy@10 | 0.7732 |
cosine_precision@1 | 0.2887 |
cosine_precision@3 | 0.1821 |
cosine_precision@5 | 0.132 |
cosine_precision@10 | 0.0773 |
cosine_recall@1 | 0.2887 |
cosine_recall@3 | 0.5464 |
cosine_recall@5 | 0.6598 |
cosine_recall@10 | 0.7732 |
cosine_ndcg@10 | 0.5235 |
cosine_mrr@10 | 0.4444 |
cosine_map@100 | 0.4515 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.268 |
cosine_accuracy@3 | 0.4845 |
cosine_accuracy@5 | 0.6495 |
cosine_accuracy@10 | 0.7629 |
cosine_precision@1 | 0.268 |
cosine_precision@3 | 0.1615 |
cosine_precision@5 | 0.1299 |
cosine_precision@10 | 0.0763 |
cosine_recall@1 | 0.268 |
cosine_recall@3 | 0.4845 |
cosine_recall@5 | 0.6495 |
cosine_recall@10 | 0.7629 |
cosine_ndcg@10 | 0.4964 |
cosine_mrr@10 | 0.4132 |
cosine_map@100 | 0.4198 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,872 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 4 tokens
- mean: 207.32 tokens
- max: 414 tokens
- min: 2 tokens
- mean: 21.79 tokens
- max: 102 tokens
- Samples:
positive anchor Automation PrivacyCenter.Cloud
Data Mapping the Tietosuojalaki. ### Greece #### Greece Effective Date : August 28, 2019 Region : EMEA (Europe, Middle East, Africa) Greek Law 4624/2019 was enacted to implement the GDPR and Directive (EU) 2016/680. The Hellenic Data Protection Agency (Αρχή προστασίας δεδομένων προσωπικού χαρακτήρα) is primarily responsible for overseeing the enforcement and implementation of Law 4624/2019 as well as the ePrivacy Directive within Greece. ### Iceland #### Iceland Effective Date : July 15, 2018 Region : EMEA (Europe, Middle East, Africa) Act 90/2018 on Data Protection and Processing
What is the role of the Hellenic Data Protection Agency in overseeing the enforcement and implementation of Greek Law 4624/2019 and the ePrivacy Directive in Greece?
EU. GDPR also applies to organizations located outside the EU (those that do not have an establishment in the EU) if they offer goods or services to, or monitor the behavior of, data subjects located in the EU, irrespective of their nationality or the company’s location. ## Data Subject Rights PDPL provides individuals rights relating to their personal data, which they can exercise. Under PDPL, the data controller should ensure the identity verification of the data subject before processing his/her data subject request. Also, the data controller must not charge for data subjects for making the data subject requests. The data subject may file a complaint to the Authority against the data controller, where the data subject does not accept the data controller’s decision regarding the request, or if the prescribed period has expired without the data subject’s receipt of any notice regarding his request. GDPR also ensures data subject rights where the data subjects can request the controller or, whatever their nationality or place of residence, concerning the processing of their personal data.” Regarding extraterritorial scope, GDPR applies to organizations that are not established in the EU, but instead monitor individuals’ behavior, as long as their behavior occurs in the EU. GDPR also applies to organizations located outside the EU (those that do not have an establishment in the EU) if they offer goods or services to, or monitor the behavior of, data subjects located in the EU, irrespective of their nationality or the company’s location. ## Rights Both regulations give individuals rights relating to their personal data, which they can exercise. Under LPPD, the data controller must process data subject’ requests and take all necessary administrative and technical measures within 30 days. LPPD does not provide a period extension. There is no fee for the data subject’ request to data controllers. However, the data controller may impose a fee, as set by the
What are the data subjects' rights under GDPR regarding behavior monitoring, and how do they compare to the rights under PDPL?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|
0.1695 | 10 | 3.9813 | - | - | - |
0.3390 | 20 | 2.6276 | - | - | - |
0.5085 | 30 | 1.7029 | - | - | - |
0.6780 | 40 | 0.641 | - | - | - |
0.8475 | 50 | 0.391 | - | - | - |
1.0 | 59 | - | 0.4761 | 0.4928 | 0.4919 |
0.1695 | 10 | 1.362 | - | - | - |
0.3390 | 20 | 0.7574 | - | - | - |
0.5085 | 30 | 0.5287 | - | - | - |
0.6780 | 40 | 0.096 | - | - | - |
0.8475 | 50 | 0.0699 | - | - | - |
1.0 | 59 | - | 0.4483 | 0.4913 | 0.4925 |
1.0169 | 60 | 0.25 | - | - | - |
1.1864 | 70 | 1.043 | - | - | - |
1.3559 | 80 | 0.8176 | - | - | - |
1.5254 | 90 | 0.6276 | - | - | - |
1.6949 | 100 | 0.0992 | - | - | - |
1.8644 | 110 | 0.0993 | - | - | - |
2.0 | 118 | - | 0.4469 | 0.4785 | 0.4862 |
0.1695 | 10 | 1.0617 | - | - | - |
0.3390 | 20 | 0.7721 | - | - | - |
0.5085 | 30 | 0.6991 | - | - | - |
0.6780 | 40 | 0.095 | - | - | - |
0.8475 | 50 | 0.0695 | - | - | - |
1.0 | 59 | - | 0.4519 | 0.4786 | 0.4748 |
1.0169 | 60 | 0.1892 | - | - | - |
1.1864 | 70 | 0.7125 | - | - | - |
1.3559 | 80 | 0.5113 | - | - | - |
1.5254 | 90 | 0.437 | - | - | - |
1.6949 | 100 | 0.0432 | - | - | - |
1.8644 | 110 | 0.0471 | - | - | - |
2.0 | 118 | - | 0.4347 | 0.4581 | 0.4516 |
0.1695 | 10 | 0.7237 | - | - | - |
0.3390 | 20 | 0.5054 | - | - | - |
0.5085 | 30 | 0.4194 | - | - | - |
0.6780 | 40 | 0.0437 | - | - | - |
0.8475 | 50 | 0.0388 | - | - | - |
1.0 | 59 | - | 0.4582 | 0.4692 | 0.4748 |
1.0169 | 60 | 0.1513 | - | - | - |
1.1864 | 70 | 0.5249 | - | - | - |
1.3559 | 80 | 0.3878 | - | - | - |
1.5254 | 90 | 0.3353 | - | - | - |
1.6949 | 100 | 0.0223 | - | - | - |
1.8644 | 110 | 0.0248 | - | - | - |
2.0 | 118 | - | 0.4251 | 0.4460 | 0.4439 |
2.0339 | 120 | 0.1012 | - | - | - |
2.2034 | 130 | 0.3534 | - | - | - |
2.3729 | 140 | 0.2937 | - | - | - |
2.5424 | 150 | 0.1769 | - | - | - |
2.7119 | 160 | 0.0107 | - | - | - |
2.8814 | 170 | 0.0102 | - | - | - |
3.0 | 177 | - | 0.4245 | 0.4448 | 0.4488 |
3.0508 | 180 | 0.1054 | - | - | - |
3.2203 | 190 | 0.2246 | - | - | - |
3.3898 | 200 | 0.2323 | - | - | - |
3.5593 | 210 | 0.1045 | - | - | - |
3.7288 | 220 | 0.0082 | - | - | - |
3.8983 | 230 | 0.0123 | - | - | - |
4.0 | 236 | - | 0.4198 | 0.4515 | 0.4438 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}