SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MugheesAwan11/bge-base-citi-dataset-9k-1k-e1")
# Run inference
sentences = [
' be sure you had enough cash on hand to pay the fare. Channels, TTS Of course, all of that changed in the blink of an eye with the advent of ride sharing. Now getting from point A to point B is as easy as opening an app on your smart phone. Not only is it simple to book the ride, but once your account is set up, payment is absolutely seamless. No longer do you have to search your wallet for cash. The app knows who you are and the entire transaction happens in the background, without further input on the part of the rider or the driver. Payment is embedded in the experience as part of the natural flow, so you don’t have to think about it. \n 2 Treasury and Trade Solutions The invisible bank 3 This is just one example of the changes happening in today’s hyper-connected world. Artificial intelligence (AI), cloud is poised to deliver the “invisible bank,” where treasury and banking functions meld together. The continuous evolution of banking computing',
'What is the advent of ride sharing?',
'How is a credit card introductory APR beneficial?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.049 |
cosine_accuracy@3 | 0.115 |
cosine_accuracy@5 | 0.15 |
cosine_accuracy@10 | 0.205 |
cosine_precision@1 | 0.049 |
cosine_precision@3 | 0.0383 |
cosine_precision@5 | 0.03 |
cosine_precision@10 | 0.0205 |
cosine_recall@1 | 0.049 |
cosine_recall@3 | 0.115 |
cosine_recall@5 | 0.15 |
cosine_recall@10 | 0.205 |
cosine_ndcg@10 | 0.118 |
cosine_ndcg@100 | 0.1733 |
cosine_mrr@10 | 0.0913 |
cosine_map@100 | 0.1008 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 9,000 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 116 tokens
- mean: 207.16 tokens
- max: 288 tokens
- min: 4 tokens
- mean: 15.73 tokens
- max: 37 tokens
- Samples:
positive anchor ation. US 10-year Treasury yields have risen more than 30 basis points since the Sep 20 FOMC meeting, but just 5 basis points for 2-year notes, steepening the yield curve. Most importantly, the recent rise in rates was a “break out” for yields above post-COVID expansion highs (Figure 4). Figure 4: 10-year US Nominal Treasury yield and 10-year Inflation Indexed US Treasury Source: Haver Analytics as of September 28, 2023. Gray areas are recessions. Past performance is no guarantee of future results. Real results may vary. Citi Global Wealth Investments
CIO Strategy Bulletin extension How to Save Money Using the Citi Shop Extension
Citi.com Save money online shopping Save shopping online How to save money shopping online How to Save Money Shopping Online common control of Citigroup. Outside the U.S., investment products and services are provided by other Citigroup affiliates. Investment Management services (including portfolio management) are available through CGMI, CGA, Citibank, N.A. and other affiliated advisory businesses. These Citigroup affiliates, including CGA, will be compensated for the respective investment management, advisory, administrative, distribution and placement services they may provide. International Personal Bank U.S. (“IPB U.S.”) is a business of Citigroup which provides its clients access to a broad array of products and services available through Citigroup, its bank and non-bank affiliates worldwide (collectively, “Citi”). Through IPB U.S. prospects and clients have access to the Citigold® Private Client International, Citigold® International, International Personal, Citi Global Executive Preferred, and Citi Global Executive Account Packages. Investment products and services are made available through Citi Personal Investments International (“CPII”), a business
What are the typical assumpitons given in the report?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768 ], "matryoshka_weights": [ 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_map@100 |
---|---|---|---|
0.0355 | 10 | 2.0527 | - |
0.0709 | 20 | 2.3092 | - |
0.1064 | 30 | 1.8688 | - |
0.1418 | 40 | 1.8818 | - |
0.1773 | 50 | 1.75 | - |
0.2128 | 60 | 1.8462 | - |
0.2482 | 70 | 1.7534 | - |
0.2837 | 80 | 1.7534 | - |
0.3191 | 90 | 1.7454 | - |
0.3546 | 100 | 1.7037 | - |
0.3901 | 110 | 1.6765 | - |
0.4255 | 120 | 1.5392 | - |
0.4610 | 130 | 1.722 | - |
0.4965 | 140 | 1.5609 | - |
0.5319 | 150 | 1.6001 | - |
0.5674 | 160 | 1.5694 | - |
0.6028 | 170 | 1.7528 | - |
0.6383 | 180 | 1.5393 | - |
0.6738 | 190 | 1.6765 | - |
0.7092 | 200 | 1.4197 | - |
0.7447 | 210 | 1.5231 | - |
0.7801 | 220 | 1.7733 | - |
0.8156 | 230 | 1.5464 | - |
0.8511 | 240 | 1.5321 | - |
0.8865 | 250 | 1.5727 | - |
0.9220 | 260 | 1.5909 | - |
0.9574 | 270 | 1.6485 | - |
0.9929 | 280 | 1.6605 | - |
1.0 | 282 | - | 0.1008 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MugheesAwan11/bge-base-citi-dataset-9k-1k-e1
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.049
- Cosine Accuracy@3 on dim 768self-reported0.115
- Cosine Accuracy@5 on dim 768self-reported0.150
- Cosine Accuracy@10 on dim 768self-reported0.205
- Cosine Precision@1 on dim 768self-reported0.049
- Cosine Precision@3 on dim 768self-reported0.038
- Cosine Precision@5 on dim 768self-reported0.030
- Cosine Precision@10 on dim 768self-reported0.021
- Cosine Recall@1 on dim 768self-reported0.049
- Cosine Recall@3 on dim 768self-reported0.115