SGPT-125M-mean-nli-linearthenpool5

Usage

For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt

Evaluation Results

For eval results, refer to our paper: https://arxiv.org/abs/2202.08904

Training

The model was trained with the parameters:

DataLoader:

sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader of length 8807 with parameters:

{'batch_size': 64}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 1,
    "evaluation_steps": 880,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 881,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel 
  (1): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.GELU', 'key_name': 'token_embeddings'})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.GELU', 'key_name': 'token_embeddings'})
  (3): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.GELU', 'key_name': 'token_embeddings'})
  (4): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.GELU', 'key_name': 'token_embeddings'})
  (5): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.GELU', 'key_name': 'token_embeddings'})
  (6): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)

Citing & Authors

@article{muennighoff2022sgpt,
  title={SGPT: GPT Sentence Embeddings for Semantic Search},
  author={Muennighoff, Niklas},
  journal={arXiv preprint arXiv:2202.08904},
  year={2022}
}
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.