llm-jp-3-13b-20241214_1651

本モデルは、大規模言語モデルに関する勉強会LLM-jpの成果物であるllm-jp-3-13b[1]を、同じくLLM-jpが公開しているオープンなデータセットllm-jp/databricks-dolly-15k-ja[2]を用いてファインチューニングしたモデルです。
[1]: HuggingFaceにて公開されています。https://huggingface.co/llm-jp/llm-jp-3-13b
[2]: Creative Commons Attribution-ShareAlike 3.0 Unported License (CC BY-SA 3.0)として公開されており、商用利用も可能です。

短時間でファインチューニングを終えるために、データセットから90サンプルだけ取り出してファインチューニングしています。

使い方の概要

本リポジトリには、ベースモデルllm-jp-3-13bとLoRAでファインチューニングした後のモデルの間の「差分」のみアップロードしております。したがって、ご利用頂くためには、ベースモデルと本モデルの両者をダウンロードする必要があります。トークナイザーはベースモデルのトークナイザーを使って下さい。

.jsonlに記載したタスクの実行と記録保存のしかた

ここでは、

{"task_id": 0, "input": "タスク記述0"}
{"task_id": 1, "input": "タスク記述1"}
{"task_id": 2, "input": "タスク記述2"}
{"task_id": 3, "input": "タスク記述3"}
    ...

のフォーマットでyour_tasks.jsonlにタスクが保存されている場合の実行方法を示します。
GPUを使用可能な環境でお試しください。
HF_TOKEN、およびyour_tasks.jsonlはご自身の環境に合わせて書き換えて下さい。

!pip install -U pip
!pip install -U transformers
!pip install -U bitsandbytes
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
!pip install -U trl

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json

# HuggingFaceからベースモデルとトークナイザーをロード
HF_TOKEN = 'your HuggingFace Token'
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "MsanMsan/llm-jp-3-13b-20241214_1651"
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=bnb_config,
    device_map="auto",
    token = HF_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)

# 本モデルをロードしベースモデルに接合
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

# データセットの読み込み。
datasets = []
with open("./your_tasks.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

results = []
for data in tqdm(datasets):

  input = data["input"]

  prompt = f"""### 指示
  {input}
  ### 回答
  """

# 推論実行 (your_tasks.jsonlに記載されたタスクを順に実行)  
  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  attention_mask = torch.ones_like(tokenized_input)
  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input, "output": output})

# 結果をjsonl形式で出力
import re
jsonl_id = re.sub(".*/", "", adapter_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .