Edit model card

Morfoz-LLM-8b-v1.0

This model is an extended version of a Llama-3 8B Instruct-based Large Language Model (LLM) for Turkish. It was trained on a cleaned Turkish raw dataset. We utilized Turkish instruction sets created from various open-source for fine-tuning with the LORA method.

Model Details

  • Base Model: Meta Llama 3 8B Instruct
  • Tokenizer Extension: Specifically extended for Turkish
  • Training Dataset: Cleaned Turkish raw data with custom Turkish instruction sets
  • Training Method: Fine-tuning with LORA

LORA Fine-Tuning Configuration

  • lora_alpha: 16
  • lora_dropout: 0.05
  • r: 64
  • target_modules: "all-linear"

Usage Examples


from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("Morfoz-Aigap/Morfoz-LLM-8b-v1.0")
model = AutoModelForCausalLM.from_pretrained("Morfoz-Aigap/Morfoz-LLM-8b-v1.0", torch_dtype=torch.bfloat16, device_map={"": 0},low_cpu_mem_usage=True)

messages = [
    {"role": "user", "content": "Kırmızı başlıklı kız adında kısa bir çocuk hikayesi yazabilir misin?"}

]

top_k = 50
top_p = 0.9
temperature = 0.6
def get_formatted_input(messages):

    for item in messages:
        if item['role'] == "user":
            item['content'] = item['content']
            break

    conversation = '\n\n'.join(["User: " + item["content"] if item["role"] == "user" else "Assistant: " + item["content"] for item in messages]) + "\n\nAssistant:"
    formatted_input = "\n\n" + conversation

    return formatted_input

formatted_input = get_formatted_input(messages)
print(formatted_input)
tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(input_ids=tokenized_prompt.input_ids, do_sample = True, attention_mask=tokenized_prompt.attention_mask, max_new_tokens=256, eos_token_id=terminators, top_p=top_p, temperature=temperature)

response = outputs[0][tokenized_prompt.input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

Downloads last month
2,847
Safetensors
Model size
8.03B params
Tensor type
F32
·
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Morfoz-Aigap/Morfoz-LLM-8b-v1.0

Quantizations
5 models