|
|
|
from typing import Callable, List, Optional
|
|
|
|
import numpy as np
|
|
|
|
|
|
def ordered_halving(val):
|
|
bin_str = f"{val:064b}"
|
|
bin_flip = bin_str[::-1]
|
|
as_int = int(bin_flip, 2)
|
|
|
|
return as_int / (1 << 64)
|
|
|
|
|
|
def uniform(
|
|
step: int = ...,
|
|
num_frames: int = ...,
|
|
context_size: Optional[int] = None,
|
|
context_stride: int = 3,
|
|
context_overlap: int = 4,
|
|
closed_loop: bool = True,
|
|
):
|
|
if num_frames <= context_size:
|
|
yield list(range(num_frames))
|
|
return
|
|
|
|
context_stride = min(
|
|
context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1
|
|
)
|
|
|
|
for context_step in 1 << np.arange(context_stride):
|
|
pad = int(round(num_frames * ordered_halving(step)))
|
|
for j in range(
|
|
int(ordered_halving(step) * context_step) + pad,
|
|
num_frames + pad + (0 if closed_loop else -context_overlap),
|
|
(context_size * context_step - context_overlap),
|
|
):
|
|
next_itr = []
|
|
for e in range(j, j + context_size * context_step, context_step):
|
|
if e >= num_frames:
|
|
e = num_frames - 2 - e % num_frames
|
|
next_itr.append(e)
|
|
|
|
yield next_itr
|
|
|
|
|
|
def get_context_scheduler(name: str) -> Callable:
|
|
if name == "uniform":
|
|
return uniform
|
|
else:
|
|
raise ValueError(f"Unknown context_overlap policy {name}")
|
|
|
|
|
|
def get_total_steps(
|
|
scheduler,
|
|
timesteps: List[int],
|
|
num_steps: Optional[int] = None,
|
|
num_frames: int = ...,
|
|
context_size: Optional[int] = None,
|
|
context_stride: int = 3,
|
|
context_overlap: int = 4,
|
|
closed_loop: bool = True,
|
|
):
|
|
return sum(
|
|
len(
|
|
list(
|
|
scheduler(
|
|
i,
|
|
num_steps,
|
|
num_frames,
|
|
context_size,
|
|
context_stride,
|
|
context_overlap,
|
|
)
|
|
)
|
|
)
|
|
for i in range(len(timesteps))
|
|
)
|
|
|