File size: 2,105 Bytes
9445995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# TODO: Adapted from cli
from typing import Callable, List, Optional

import numpy as np


def ordered_halving(val):
    bin_str = f"{val:064b}"
    bin_flip = bin_str[::-1]
    as_int = int(bin_flip, 2)

    return as_int / (1 << 64)


def uniform(

    step: int = ...,

    num_frames: int = ...,

    context_size: Optional[int] = None,

    context_stride: int = 3,

    context_overlap: int = 4,

    closed_loop: bool = True,

):
    if num_frames <= context_size:
        yield list(range(num_frames))
        return

    context_stride = min(
        context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1
    )

    for context_step in 1 << np.arange(context_stride):
        pad = int(round(num_frames * ordered_halving(step)))
        for j in range(
            int(ordered_halving(step) * context_step) + pad,
            num_frames + pad + (0 if closed_loop else -context_overlap),
            (context_size * context_step - context_overlap),
        ):
            next_itr = []
            for e in range(j, j + context_size * context_step, context_step):
                if e >= num_frames:
                    e = num_frames - 2 - e % num_frames
                next_itr.append(e)

            yield next_itr


def get_context_scheduler(name: str) -> Callable:
    if name == "uniform":
        return uniform
    else:
        raise ValueError(f"Unknown context_overlap policy {name}")


def get_total_steps(

    scheduler,

    timesteps: List[int],

    num_steps: Optional[int] = None,

    num_frames: int = ...,

    context_size: Optional[int] = None,

    context_stride: int = 3,

    context_overlap: int = 4,

    closed_loop: bool = True,

):
    return sum(
        len(
            list(
                scheduler(
                    i,
                    num_steps,
                    num_frames,
                    context_size,
                    context_stride,
                    context_overlap,
                )
            )
        )
        for i in range(len(timesteps))
    )