|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:557850 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
datasets: [] |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Mwanamume aliyepangwa vizuri anasimama kwa mguu mmoja karibu na |
|
pwani safi ya bahari. |
|
sentences: |
|
- mtu anacheka wakati wa kufua nguo |
|
- Mwanamume fulani yuko nje karibu na ufuo wa bahari. |
|
- Mwanamume fulani ameketi kwenye sofa yake. |
|
- source_sentence: Mwanamume mwenye ngozi nyeusi akivuta sigareti karibu na chombo |
|
cha taka cha kijani. |
|
sentences: |
|
- Karibu na chombo cha taka mwanamume huyo alisimama na kuvuta sigareti |
|
- Kitanda ni chafu. |
|
- Alipokuwa kwenye dimbwi la kuogelea mvulana huyo mwenye ugonjwa wa albino alijihadhari |
|
na jua kupita kiasi |
|
- source_sentence: Mwanamume kijana mwenye nywele nyekundu anaketi ukutani akisoma |
|
gazeti huku mwanamke na msichana mchanga wakipita. |
|
sentences: |
|
- Mwanamume aliyevalia shati la bluu amegonga ukuta kando ya barabara na gari la |
|
bluu na gari nyekundu lenye maji nyuma. |
|
- Mwanamume mchanga anatazama gazeti huku wanawake wawili wakipita karibu naye. |
|
- Mwanamume huyo mchanga analala huku Mama akimwongoza binti yake kwenye bustani. |
|
- source_sentence: Wasichana wako nje. |
|
sentences: |
|
- Wasichana wawili wakisafiri kwenye sehemu ya kusisimua. |
|
- Kuna watu watatu wakiongoza gari linaloweza kugeuzwa-geuzwa wakipita watu wengine. |
|
- Wasichana watatu wamesimama pamoja katika chumba, mmoja anasikiliza, mwingine |
|
anaandika ukutani na wa tatu anaongea nao. |
|
- source_sentence: Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso |
|
chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo |
|
ya miguu ya benchi. |
|
sentences: |
|
- Mwanamume amelala uso chini kwenye benchi ya bustani. |
|
- Mwanamke anaunganisha uzi katika mipira kando ya rundo la mipira |
|
- Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6942864389866223 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6856061049537777 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6885375818451587 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6872214410233022 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6914785578290242 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6905722127311041 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6799233396985102 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.667743621858275 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6942864389866223 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6905722127311041 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6891584502617563 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6814103986417178 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6968187377070036 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6920002958564649 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7000628001426884 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6960243670969477 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6364862920838279 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6189765115954626 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7000628001426884 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6960243670969477 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6782226699898293 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6755345411699644 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6962074727926596 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.689094339218281 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6996133052307816 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6937517032138506 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.58122590177631 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5606971476688047 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6996133052307816 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6937517032138506 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("Mollel/swahili-all-MiniLM-L6-v2-nli-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo ya miguu ya benchi.', |
|
'Mwanamume amelala uso chini kwenye benchi ya bustani.', |
|
'Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6943 | |
|
| **spearman_cosine** | **0.6856** | |
|
| pearson_manhattan | 0.6885 | |
|
| spearman_manhattan | 0.6872 | |
|
| pearson_euclidean | 0.6915 | |
|
| spearman_euclidean | 0.6906 | |
|
| pearson_dot | 0.6799 | |
|
| spearman_dot | 0.6677 | |
|
| pearson_max | 0.6943 | |
|
| spearman_max | 0.6906 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6892 | |
|
| **spearman_cosine** | **0.6814** | |
|
| pearson_manhattan | 0.6968 | |
|
| spearman_manhattan | 0.692 | |
|
| pearson_euclidean | 0.7001 | |
|
| spearman_euclidean | 0.696 | |
|
| pearson_dot | 0.6365 | |
|
| spearman_dot | 0.619 | |
|
| pearson_max | 0.7001 | |
|
| spearman_max | 0.696 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6782 | |
|
| **spearman_cosine** | **0.6755** | |
|
| pearson_manhattan | 0.6962 | |
|
| spearman_manhattan | 0.6891 | |
|
| pearson_euclidean | 0.6996 | |
|
| spearman_euclidean | 0.6938 | |
|
| pearson_dot | 0.5812 | |
|
| spearman_dot | 0.5607 | |
|
| pearson_max | 0.6996 | |
|
| spearman_max | 0.6938 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 64 |
|
- `per_device_eval_batch_size`: 64 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-64_spearman_cosine | |
|
|:------:|:----:|:-------------:|:----------------------------:|:----------------------------:|:---------------------------:| |
|
| 0.0229 | 100 | 12.9498 | - | - | - | |
|
| 0.0459 | 200 | 9.9003 | - | - | - | |
|
| 0.0688 | 300 | 8.6333 | - | - | - | |
|
| 0.0918 | 400 | 8.0124 | - | - | - | |
|
| 0.1147 | 500 | 7.2322 | - | - | - | |
|
| 0.1376 | 600 | 6.936 | - | - | - | |
|
| 0.1606 | 700 | 7.2855 | - | - | - | |
|
| 0.1835 | 800 | 6.5985 | - | - | - | |
|
| 0.2065 | 900 | 6.4369 | - | - | - | |
|
| 0.2294 | 1000 | 6.2767 | - | - | - | |
|
| 0.2524 | 1100 | 6.4011 | - | - | - | |
|
| 0.2753 | 1200 | 6.1288 | - | - | - | |
|
| 0.2982 | 1300 | 6.1466 | - | - | - | |
|
| 0.3212 | 1400 | 5.9279 | - | - | - | |
|
| 0.3441 | 1500 | 5.8959 | - | - | - | |
|
| 0.3671 | 1600 | 5.5911 | - | - | - | |
|
| 0.3900 | 1700 | 5.5258 | - | - | - | |
|
| 0.4129 | 1800 | 5.5835 | - | - | - | |
|
| 0.4359 | 1900 | 5.4701 | - | - | - | |
|
| 0.4588 | 2000 | 5.3888 | - | - | - | |
|
| 0.4818 | 2100 | 5.4474 | - | - | - | |
|
| 0.5047 | 2200 | 5.1465 | - | - | - | |
|
| 0.5276 | 2300 | 5.28 | - | - | - | |
|
| 0.5506 | 2400 | 5.4184 | - | - | - | |
|
| 0.5735 | 2500 | 5.3811 | - | - | - | |
|
| 0.5965 | 2600 | 5.2171 | - | - | - | |
|
| 0.6194 | 2700 | 5.3212 | - | - | - | |
|
| 0.6423 | 2800 | 5.2493 | - | - | - | |
|
| 0.6653 | 2900 | 5.459 | - | - | - | |
|
| 0.6882 | 3000 | 5.068 | - | - | - | |
|
| 0.7112 | 3100 | 5.1415 | - | - | - | |
|
| 0.7341 | 3200 | 5.0764 | - | - | - | |
|
| 0.7571 | 3300 | 6.1606 | - | - | - | |
|
| 0.7800 | 3400 | 6.1028 | - | - | - | |
|
| 0.8029 | 3500 | 5.7441 | - | - | - | |
|
| 0.8259 | 3600 | 5.7148 | - | - | - | |
|
| 0.8488 | 3700 | 5.4799 | - | - | - | |
|
| 0.8718 | 3800 | 5.4396 | - | - | - | |
|
| 0.8947 | 3900 | 5.3519 | - | - | - | |
|
| 0.9176 | 4000 | 5.2394 | - | - | - | |
|
| 0.9406 | 4100 | 5.2311 | - | - | - | |
|
| 0.9635 | 4200 | 5.3486 | - | - | - | |
|
| 0.9865 | 4300 | 5.215 | - | - | - | |
|
| 1.0 | 4359 | - | 0.6814 | 0.6856 | 0.6755 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.9 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.40.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.29.3 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |