MoMonir's picture
Update README.md
c400ccc verified
|
raw
history blame
3.89 kB
---
language:
- en
license: apache-2.0
tags:
- chat
- llama-cpp
- gguf-my-repo
base_model: Qwen/Qwen2-7B-Instruct
pipeline_tag: text-generation
---
# MoMonir/Qwen2-7B-Instruct-GGUF
This model was converted to GGUF format from [`Qwen/Qwen2-7B-Instruct`](https://huggingface.co/Qwen/Qwen2-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen2-7B-Instruct) for more details on the model.
<!-- README_GGUF.md-about-gguf start -->
### About GGUF ([TheBloke](https://huggingface.co/TheBloke) Description)
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [backyard.ai](https://backyard.ai/) Formeraly [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
<!-- README_GGUF.md-about-gguf end -->
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama --hf-repo MoMonir/Qwen2-7B-Instruct-GGUF --hf-file qwen2-7b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo MoMonir/Qwen2-7B-Instruct-GGUF --hf-file qwen2-7b-instruct-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./main --hf-repo MoMonir/Qwen2-7B-Instruct-GGUF --hf-file qwen2-7b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./server --hf-repo MoMonir/Qwen2-7B-Instruct-GGUF --hf-file qwen2-7b-instruct-q4_k_m.gguf -c 2048
```