|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
- layoutlmv3 |
|
- token_classifier |
|
- layout_analysis |
|
datasets: |
|
- pierreguillou/DocLayNet-small |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-DocLayNet |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: doc_lay_net-small |
|
type: doc_lay_net-small |
|
config: DocLayNet_2022.08_processed_on_2023.01 |
|
split: test |
|
args: DocLayNet_2022.08_processed_on_2023.01 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.6178861788617886 |
|
- name: Recall |
|
type: recall |
|
value: 0.7238095238095238 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6666666666666667 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8719611021069692 |
|
language: |
|
- en |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-DocLayNet |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the doc_lay_net-small dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5644 |
|
- Precision: 0.6179 |
|
- Recall: 0.7238 |
|
- F1: 0.6667 |
|
- Accuracy: 0.8720 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 1.3383 | 0.58 | 200 | 0.8358 | 0.3007 | 0.4381 | 0.3566 | 0.7724 | |
|
| 0.8308 | 1.16 | 400 | 0.6735 | 0.4634 | 0.5429 | 0.5 | 0.8084 | |
|
| 0.518 | 1.74 | 600 | 0.5706 | 0.5373 | 0.6857 | 0.6025 | 0.8399 | |
|
| 0.3856 | 2.33 | 800 | 0.6303 | 0.6032 | 0.7238 | 0.6580 | 0.8648 | |
|
| 0.2558 | 2.91 | 1000 | 0.5644 | 0.6179 | 0.7238 | 0.6667 | 0.8720 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.3 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|
|
|
|
|
|
### How to Train & Inference: |
|
|
|
Check this out this repo: https://github.com/mit1280/Document-AI |