Minbyul's picture
End of training
1973b5a verified
metadata
base_model: Minbyul/selfbiorag-7b-wo-medication_qa-sft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - alignment-handbook
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: selfbiorag-7b-dpo-full-sft-wo-medication_qa
    results: []

selfbiorag-7b-dpo-full-sft-wo-medication_qa

This model is a fine-tuned version of Minbyul/selfbiorag-7b-wo-medication_qa-sft on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2759
  • Rewards/chosen: -1.2305
  • Rewards/rejected: -7.1000
  • Rewards/accuracies: 0.8920
  • Rewards/margins: 5.8695
  • Logps/rejected: -1442.5582
  • Logps/chosen: -679.8936
  • Logits/rejected: -0.3285
  • Logits/chosen: -0.3524

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Logits/chosen Logits/rejected Logps/chosen Logps/rejected Validation Loss Rewards/accuracies Rewards/chosen Rewards/margins Rewards/rejected
0.2249 0.32 100 -0.1107 -0.0290 -650.2339 -1190.2701 0.3821 0.8551 -0.9339 3.6432 -4.5771
0.1549 0.65 200 -0.3180 -0.3222 -652.9113 -1308.4048 0.2709 0.8977 -0.9607 4.7978 -5.7585
0.0946 0.97 300 -0.3523 -0.3283 -679.6155 -1442.4718 0.2756 0.8920 -1.2277 5.8714 -7.0991

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2