metadata
license: llama2
base_model: epfl-llm/meditron-7b
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: meditron-7b-dpo-full-wo-kqa_golden-ep3
results: []
meditron-7b-dpo-full-wo-kqa_golden-ep3
This model is a fine-tuned version of epfl-llm/meditron-7b on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.4459
- Rewards/chosen: -0.4566
- Rewards/rejected: -1.4012
- Rewards/accuracies: 0.8068
- Rewards/margins: 0.9447
- Logps/rejected: -1444.6896
- Logps/chosen: -859.0582
- Logits/rejected: -0.9203
- Logits/chosen: -0.8310
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5643 | 0.5 | 100 | -0.6995 | -0.8645 | -818.2397 | -1334.0771 | 0.5890 | 0.7727 | -0.0484 | 0.2467 | -0.2951 |
0.3959 | 1.0 | 200 | -0.8310 | -0.9203 | -859.0582 | -1444.6896 | 0.4459 | 0.8068 | -0.4566 | 0.9447 | -1.4012 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2