Minbyul's picture
End of training
a8791f1 verified
metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: llama2-7b-dpo-full-wo-medication_qa-ep3
    results: []

llama2-7b-dpo-full-wo-medication_qa-ep3

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6486
  • Rewards/chosen: 0.0485
  • Rewards/rejected: -0.0716
  • Rewards/accuracies: 0.7847
  • Rewards/margins: 0.1201
  • Logps/rejected: -1097.3336
  • Logps/chosen: -485.8272
  • Logits/rejected: -1.1127
  • Logits/chosen: -0.0114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5991 0.7 100 0.6540 0.0513 -0.0539 0.7778 0.1052 -1095.5646 -485.5474 -1.1199 -0.0017

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.14.6
  • Tokenizers 0.15.2