Uploaded model
- Developed by: MikenekoDyn
- License: CC-BY-NC-SA (ichikara-instruction datasetからの継承による)
- Finetuned from model : llm-jp/llm-jp-3-13b
Sample Use
必要なパッケージのインストール
pip install unsloth torch peft
下記はELYZA-tasks-100-TV.jsonlに使用する場合のサンプルコードです。
HF_TOKEN = "your token"
import torch
max_new_tokens = 1024
new_model_id = "MikenekoDyn/llm-jp-13b-061215b" #'_lora'は読み込むときに自動で付加される
load_in_4bit = False
load_in_8bit = not load_in_4bit
do_sample=True
repetition_penalty=1.05
temperature=0.7
top_p=0.95
## ELYZA-tasks-100-TVの読み込み
import json
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
## Config設定
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=load_in_4bit,
load_in_8bit=load_in_8bit,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
new_model_id+"_lora",
quantization_config=bnb_config,
device_map="auto",
token = HF_TOKEN
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(new_model_id+"_lora", trust_remote_code=True, token = HF_TOKEN)
## 推論実施
from tqdm import tqdm
results = []
ii=0
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### User
{input}
### Assistant
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
repetition_penalty=repetition_penalty,
temperature=temperature,
top_p=top_p
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
if ii<3:
print(output)
results.append({"task_id": data["task_id"], "input": input, "output": output})
ii=ii+1
# jsonlで保存
import re
save_model_name = re.sub(".*/", "", new_model_id)
with open(f"{save_model_name}_output.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Instruction Tuning
使用データセット
- ichikara-instruction dataset
- magpie-sft
- ELYZA-tasks-100
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Model tree for MikenekoDyn/llm-jp-13b-061215b_lora
Base model
llm-jp/llm-jp-3-13b