Dialogue_dfm / README.md
yemen2016's picture
Update README.md
5896c01 verified
|
raw
history blame
3.44 kB
metadata
base_model: KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align
library_name: transformers
metrics:
  - accuracy
  - precision
  - recall
  - f1
tags:
  - generated_from_trainer
model-index:
  - name: dfm
    results: []

Dialogue_dfm

This model is a fine-tuned version of KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9417
  • Precision: 0.9468
  • Recall: 0.9417
  • F1: 0.9418
  • Loss: 0.4894

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Precision Recall F1 Validation Loss
No log 0.9412 8 0.7223 0.7770 0.7223 0.7069 0.8079
No log 2.0 17 0.7821 0.8280 0.7821 0.7670 0.7157
No log 2.9412 25 0.9217 0.9243 0.9217 0.9174 0.3617
No log 4.0 34 0.9283 0.9331 0.9283 0.9272 0.3444
No log 4.9412 42 0.9156 0.9274 0.9156 0.9168 0.4618
No log 6.0 51 0.9271 0.9316 0.9271 0.9277 0.3164
No log 6.9412 59 0.9356 0.9387 0.9356 0.9349 0.3228
No log 8.0 68 0.9329 0.9398 0.9329 0.9334 0.4814
No log 8.9412 76 0.9402 0.9450 0.9402 0.9400 0.4819
No log 10.0 85 0.9409 0.9459 0.9409 0.9409 0.4952
No log 10.9412 93 0.9367 0.9428 0.9367 0.9370 0.5182
No log 12.0 102 0.9409 0.9462 0.9409 0.9411 0.4947
No log 12.9412 110 0.9405 0.9457 0.9405 0.9406 0.4927
No log 14.0 119 0.9409 0.9462 0.9409 0.9411 0.4912
No log 14.9412 127 0.9413 0.9465 0.9413 0.9414 0.4917
No log 16.0 136 0.9413 0.9464 0.9413 0.9415 0.4893
No log 16.9412 144 0.9413 0.9464 0.9413 0.9415 0.4890
No log 18.0 153 0.9417 0.9468 0.9417 0.9418 0.4893
No log 18.8235 160 0.9417 0.9468 0.9417 0.9418 0.4894

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1