Dialogue_dfm / README.md
yemen2016's picture
Upload tokenizer
15bcf19 verified
|
raw
history blame
3.44 kB
metadata
base_model: KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align
library_name: transformers
metrics:
  - accuracy
  - precision
  - recall
  - f1
tags:
  - generated_from_trainer
model-index:
  - name: dfm
    results: []

dfm

This model is a fine-tuned version of KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.9421
  • Precision: 0.9470
  • Recall: 0.9421
  • F1: 0.9422
  • Loss: 0.5839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Precision Recall F1 Validation Loss
No log 0.9412 8 0.8711 0.8341 0.8711 0.8507 0.4719
No log 2.0 17 0.9237 0.9242 0.9237 0.9217 0.3301
No log 2.9412 25 0.9225 0.9301 0.9225 0.9232 0.3470
No log 4.0 34 0.9317 0.9315 0.9317 0.9299 0.2004
No log 4.9412 42 0.9379 0.9443 0.9379 0.9383 0.4529
No log 6.0 51 0.9394 0.9454 0.9394 0.9399 0.4719
No log 6.9412 59 0.9425 0.9458 0.9425 0.9419 0.4498
No log 8.0 68 0.9421 0.9471 0.9421 0.9423 0.4921
No log 8.9412 76 0.9440 0.9486 0.9440 0.9440 0.5242
No log 10.0 85 0.9444 0.9488 0.9444 0.9443 0.5476
No log 10.9412 93 0.9421 0.9471 0.9421 0.9422 0.5733
No log 12.0 102 0.9432 0.9479 0.9432 0.9433 0.5725
No log 12.9412 110 0.9432 0.9478 0.9432 0.9432 0.5677
No log 14.0 119 0.9432 0.9478 0.9432 0.9432 0.5714
No log 14.9412 127 0.9425 0.9473 0.9425 0.9425 0.5802
No log 16.0 136 0.9417 0.9468 0.9417 0.9418 0.5838
No log 16.9412 144 0.9421 0.9470 0.9421 0.9422 0.5857
No log 18.0 153 0.9421 0.9470 0.9421 0.9422 0.5840
No log 18.8235 160 0.9421 0.9470 0.9421 0.9422 0.5839

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1