MelanieKoe's picture
Model save
b7835ca verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v2-base-pretrained_lr5e-5_at0.8_da0.3
    results: []

w2v2-base-pretrained_lr5e-5_at0.8_da0.3

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.8781
  • Wer: 0.7877

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
24.822 17.86 250 8.9601 1.0
6.2153 35.71 500 5.9697 1.0
3.5607 53.57 750 5.5112 1.0
3.2305 71.43 1000 5.6378 1.0
2.9631 89.29 1250 5.4385 1.0
2.5463 107.14 1500 5.2806 0.9953
2.1207 125.0 1750 5.3065 0.9492
1.7629 142.86 2000 5.4365 0.9158
1.4631 160.71 2250 5.1678 0.8667
1.2158 178.57 2500 5.3097 0.8428
1.0507 196.43 2750 5.6917 0.8279
0.9326 214.29 3000 5.7407 0.8197
0.8245 232.14 3250 5.5588 0.8039
0.7415 250.0 3500 5.7107 0.7860
0.694 267.86 3750 5.8551 0.7971
0.6634 285.71 4000 5.8781 0.7877

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1