|
--- |
|
license: apache-2.0 |
|
extra_gated_prompt: "We will release in the nearly future." |
|
extra_gated_fields: |
|
Name: text |
|
Company: text |
|
Title: text |
|
--- |
|
|
|
# Model Card for MediaTek Research Breeze-7B-FC-v1_0 |
|
|
|
MediaTek Research Breeze-7B-FC (hereinafter referred to as Breeze-7B-FC) is an advanced language model developed by MediaTek Research, building on [Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0). Breeze-7B-FC extends its predecessor by incorporating a key feature: function calling. These enhancements make Breeze-7B-FC more versatile and capable of handling a wider range of tasks efficiently. |
|
|
|
|
|
## 🏆 Performance |
|
|
|
| Models | #Parameters | Organization | License | 🧰 Function Calling? | 💬 Instrustion Following? | |
|
|--------------------------------------------------------------------------------------------|-------------|------------|------------|-------------------|----------| |
|
| [Breeze-7B-Instruct-v1_0](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0)| 7B | MediaTek Research | Apache 2.0 | ❌ | ✅ | |
|
| [**Breeze-7B-FC-v1_0**](https://huggingface.co/MediaTek-Research/Breeze-7B-FC-v1_0) | 7B | MediaTek Research | Apache 2.0 | ✅ | ✅ | |
|
| [Gorilla-OpenFunctions-v2](https://huggingface.co/MediaTek-Research/Breeze-7B-FC-v1_0) | 7B | Gorilla LLM | Apache 2.0 | ✅ | ❌ | |
|
| [GPT-3.5-Turbo-0125](https://openai.com) | | OpenAI | Proprietary| ✅ | ✅ | |
|
|
|
**Evaluate function calling on EN benchmark** |
|
|
|
We evaluate the performance of function calling on English with benchmark [Berkeley function-calling leaderboard](https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html). |
|
|
|
| Models | ↑ Overall | Irrelevance<br/>Detection | AST/<br/>Simple | AST/<br/>Multiple | AST/<br/>Parallel | AST/<br/>Parallel-Multiple | Exec/<br/>Simple | Exec/<br/>Multiple | Exec/<br/>Parallel | Exec/<br/>Parallel-Multiple | |
|
|-----------------------------------|----------|---------------------|------------|--------------|--------------|------------------------|--------------|---------------------|---------------------|-------------------------------| |
|
| **Breeze-7B-FC-v1_0 (FC)** | 86.89 | 76.25 | 90.00 | 93.00 | 84.00 | 84.00 | 100.00 | 92.00 | 88.00 | 77.50 | |
|
| Gorilla-OpenFunctions-v2 (FC) | 85.95 | 60.00 | 94.25 | 95.50 | 86.50 | 86.00 | 97.00 | 96.00 | 80.00 | 75.00 | |
|
| GPT-3.5-Turbo-0125 (FC) | 72.77 | 4.58 | 87.75 | 90.50 | 88.50 | 82.50 | 91.00 | 82.00 | 78.00 | 52.50 | |
|
|
|
|
|
|
|
![](misc/radar_chart_en.png) |
|
|
|
**Evaluate function calling on ZHTW benchmark** |
|
|
|
We evaluate the performance of function calling on Traditional Chinese with benchmark [function-calling-leaderboard-for-zhtw](https://github.com/mtkresearch/function-calling-leaderboard-for-zhtw). |
|
|
|
| Models | ↑ Overall | Irrelevance<br/>Detection | AST/<br/>Simple | AST/<br/>Multiple | AST/<br/>Parallel | AST/<br/>Parallel-Multiple | Exec/<br/>Simple | Exec/<br/>Multiple | Exec/<br/>Parallel | Exec/<br/>Parallel-Multiple | |
|
|-----------------------------------|----------|---------------------|------------|--------------|--------------|------------------------|--------------|---------------------|---------------------|-------------------------------| |
|
| **Breeze-7B-FC-v1_0 (FC)** | 78.18 | 72.50 | 82.00 | 86.00 | 76.50|67.00|88.00|88.00|80.00|60.00| |
|
| Gorilla-OpenFunctions-v2 (FC) | 75.68 | 53.75 | 84.75 | 86.50 | 72.50 | 68.00 | 92.00 | 92.00 | 62.00 | 72.50 | |
|
| GPT-3.5-Turbo-0125 (FC) | 66.15 | 7.50 | 83.75 | 83.50 | 73.00 | 65.50 | 88.00 | 84.00 | 72.00 | 40.00 | |
|
|
|
|
|
|
|
![](misc/radar_chart_zhtw.png) |
|
|
|
|
|
**Evaluate instrustion following on EN benchmark** |
|
|
|
We evaluate the performance of instruction following on English with benchmark [MT-Bench](https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/README.md). |
|
|
|
| | Win | Tie | Lose | |
|
|---|---|---|---| |
|
| **Breeze-7B-FC-v1_0** *v.s.* Breeze-7B-Instruct-v1_0 | 29 (18.1%) | 55 (34.3%) | 76 (47.5%) | |
|
|
|
|
|
**Evaluate instrustion following on ZHTW benchmark** |
|
|
|
We evaluate the performance of instruction following on Traditional Chinese with benchmark [MT-Bench-TC](https://github.com/mtkresearch/TCEval). |
|
|
|
| | Win | Tie | Lose | |
|
|---|---|---|---| |
|
| **Breeze-7B-FC-v1_0** *v.s.* Breeze-7B-Instruct-v1_0 | 35 (21.9%) | 73 (45.6%) | 52 (32.5%) | |
|
|
|
|
|
## 👩💻 How to use |
|
|
|
**Demo with Kaggle Kernel** |
|
|
|
Start from clicking the "Copy & Edit" button on https://www.kaggle.com/code/ycckaggle/run-breeze-fc |
|
|
|
**Dependiency** |
|
|
|
Install `mtkresearch` package |
|
|
|
``` |
|
pip install mtkresearch |
|
``` |
|
|
|
**Hosting the model by VLLM** |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
|
|
llm = LLM( |
|
model='MediaTek-Research/Breeze-7B-FC-v1_0', |
|
tensor_parallel_size=num_gpu, # number of gpus |
|
gpu_memory_utilization=0.7, |
|
dtype='half' |
|
) |
|
|
|
turn_end_token_id = 61876 # <|im_end|> |
|
params = SamplingParams( |
|
temperature=0.01, |
|
top_p=0.01, |
|
max_tokens=4096, |
|
repetition_penalty=1.1, |
|
stop_token_ids=[turn_end_token_id] |
|
) |
|
|
|
def _inference(prompt, llm, params): |
|
return llm.generate(prompt, params)[0].outputs[0].text |
|
|
|
``` |
|
|
|
**Instruction following** |
|
|
|
```python |
|
from mtkresearch.llm.prompt import MRPromptV2 |
|
|
|
sys_prompt = ('You are a helpful AI assistant built by MediaTek Research. ' |
|
'The user you are helping speaks Traditional Chinese and comes from Taiwan.') |
|
|
|
prompt_engine = MRPromptV2() |
|
|
|
conversations = [ |
|
{"role": "system", "content": sys_prompt}, |
|
{"role": "user", "content": "請問什麼是深度學習?"}, |
|
] |
|
|
|
prompt = prompt_engine.get_prompt(conversations) |
|
|
|
|
|
output_str = _inference(prompt, llm, params) |
|
result = prompt_engine.parse_generated_str(output_str) |
|
|
|
print(result) |
|
# {'role': 'assistant', |
|
# 'content': '深度學習(Deep Learning)是一種機器學習方法,它模仿人類大腦的神經網路結構來 |
|
# 處理複雜的數據和任務。在深度學習中,模型由多層人工神經元組成,每個神經元之間有 |
|
# 權重連接,並通過非線性轉換進行計算。這些層與層之間的相互作用使模型能夠學習複雜 |
|
# 的函數關係或模式,從而解決各種問題,如圖像識別、自然語言理解、語音辨識等。深度 |
|
# 學習通常需要大量的數據和強大的計算能力,因此經常使用圖形處理器(GPU)或特殊的 |
|
# 加速器來執行。'} |
|
``` |
|
|
|
**Function Calling** |
|
|
|
```python |
|
import json |
|
|
|
from mtkresearch.llm.prompt import MRPromptV2 |
|
|
|
functions = [ |
|
{ |
|
"name": "get_current_weather", |
|
"description": "Get the current weather in a given location", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"location": { |
|
"type": "string", |
|
"description": "The city and state, e.g. San Francisco, CA" |
|
}, |
|
"unit": { |
|
"type": "string", |
|
"enum": ["celsius", "fahrenheit"] |
|
} |
|
}, |
|
"required": ["location"] |
|
} |
|
} |
|
] |
|
|
|
def fake_get_current_weather(location, unit=None): |
|
return {'temperature': 30} |
|
|
|
mapping = { |
|
'get_current_weather': fake_get_current_weather |
|
} |
|
|
|
prompt_engine = MRPromptV2() |
|
|
|
# stage 1: query |
|
conversations = [ |
|
{"role": "user", "content": "請問台北目前溫度是攝氏幾度?"}, |
|
] |
|
|
|
prompt = prompt_engine.get_prompt(conversations, functions=functions) |
|
|
|
output_str = _inference(prompt, llm, params) |
|
result = prompt_engine.parse_generated_str(output_str) |
|
|
|
print(result) |
|
# {'role': 'assistant', |
|
# 'tool_calls': [ |
|
# {'id': 'call_U9bYCBRAbF639uUqfwehwSbw', 'type': 'function', |
|
# 'function': {'name': 'get_current_weather', 'arguments': '{"location": "台北, 台灣", "unit": "celsius"}'}}]} |
|
|
|
# stage 2: execute called functions |
|
conversations.append(result) |
|
|
|
tool_call = result['tool_calls'][0] |
|
func_name = tool_call['function']['name'] |
|
func = mapping[func_name] |
|
arguments = json.loads(tool_call['function']['arguments']) |
|
called_result = func(**arguments) |
|
|
|
# stage 3: put executed results |
|
conversations.append( |
|
{ |
|
'role': 'tool', |
|
'tool_call_id': tool_call['id'], |
|
'name': func_name, |
|
'content': json.dumps(called_result) |
|
} |
|
) |
|
|
|
prompt = prompt_engine.get_prompt(conversations, functions=functions) |
|
|
|
output_str2 = _inference(prompt, llm, params) |
|
result2 = prompt_engine.parse_generated_str(output_str2) |
|
print(result2) |
|
# {'role': 'assistant', 'content': '台北目前的溫度是攝氏30度'} |
|
``` |
|
|
|
|
|
|