Update README.md
#6
by
MaziyarPanahi
- opened
README.md
CHANGED
@@ -134,10 +134,19 @@ This model is suitable for a wide range of applications, including but not limit
|
|
134 |
|
135 |
Coming soon!
|
136 |
|
|
|
|
|
137 |
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
Coming soon!
|
141 |
|
142 |
# Prompt Template
|
143 |
|
@@ -182,16 +191,4 @@ model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-2.4-rys-78b")
|
|
182 |
# Ethical Considerations
|
183 |
|
184 |
As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.
|
185 |
-
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
186 |
-
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__calme-2.4-rys-78b)
|
187 |
-
|
188 |
-
| Metric |Value|
|
189 |
-
|-------------------|----:|
|
190 |
-
|Avg. |50.26|
|
191 |
-
|IFEval (0-Shot) |80.11|
|
192 |
-
|BBH (3-Shot) |62.16|
|
193 |
-
|MATH Lvl 5 (4-Shot)|37.69|
|
194 |
-
|GPQA (0-shot) |20.36|
|
195 |
-
|MuSR (0-shot) |34.57|
|
196 |
-
|MMLU-PRO (5-shot) |66.69|
|
197 |
|
|
|
134 |
|
135 |
Coming soon!
|
136 |
|
137 |
+
# ๐ [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
138 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__calme-2.4-rys-78b)
|
139 |
|
140 |
+
| Metric |Value|
|
141 |
+
|-------------------|----:|
|
142 |
+
|Avg. |50.26|
|
143 |
+
|IFEval (0-Shot) |80.11|
|
144 |
+
|BBH (3-Shot) |62.16|
|
145 |
+
|MATH Lvl 5 (4-Shot)|37.69|
|
146 |
+
|GPQA (0-shot) |20.36|
|
147 |
+
|MuSR (0-shot) |34.57|
|
148 |
+
|MMLU-PRO (5-shot) |66.69|
|
149 |
|
|
|
150 |
|
151 |
# Prompt Template
|
152 |
|
|
|
191 |
# Ethical Considerations
|
192 |
|
193 |
As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|