Description

MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ is a quantized (GPTQ) version of NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO

How to use

Install the necessary packages

pip install --upgrade accelerate auto-gptq transformers

Example Python code

from transformers import AutoTokenizer, pipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import torch

model_id = "MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ"

quantize_config = BaseQuantizeConfig(
        bits=4,
        group_size=128,
        desc_act=False
    )

model = AutoGPTQForCausalLM.from_quantized(
        model_id,
        use_safetensors=True,
        device="cuda:0",
        quantize_config=quantize_config)

tokenizer = AutoTokenizer.from_pretrained(model_id)

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95,
    repetition_penalty=1.1
)

outputs = pipe("What is a large language model?")
print(outputs[0]["generated_text"])
Downloads last month
28
Safetensors
Model size
6.49B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ

Collections including MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-DPO-GPTQ