Mazen Amria commited on
Commit
317fdb7
·
1 Parent(s): b95932e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cifar100
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: swin-small-finetuned-cifar100
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: cifar100
17
+ type: cifar100
18
+ args: cifar100
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.8938
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # swin-small-finetuned-cifar100
29
+
30
+ This model is a fine-tuned version of [microsoft/swin-small-patch4-window7-224](https://huggingface.co/microsoft/swin-small-patch4-window7-224) on the cifar100 dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.6281
33
+ - Accuracy: 0.8938
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 4e-05
53
+ - train_batch_size: 16
54
+ - eval_batch_size: 16
55
+ - seed: 42
56
+ - gradient_accumulation_steps: 4
57
+ - total_train_batch_size: 64
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 20
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
67
+ | 0.72 | 1.0 | 781 | 0.6691 | 0.8077 |
68
+ | 0.6944 | 2.0 | 1562 | 0.4797 | 0.8495 |
69
+ | 0.2794 | 3.0 | 2343 | 0.4338 | 0.869 |
70
+ | 0.2569 | 4.0 | 3124 | 0.4263 | 0.879 |
71
+ | 0.1417 | 5.0 | 3905 | 0.4385 | 0.8819 |
72
+ | 0.0961 | 6.0 | 4686 | 0.4720 | 0.8854 |
73
+ | 0.0584 | 7.0 | 5467 | 0.4941 | 0.885 |
74
+ | 0.0351 | 8.0 | 6248 | 0.5253 | 0.885 |
75
+ | 0.0107 | 9.0 | 7029 | 0.5598 | 0.8887 |
76
+ | 0.0118 | 10.0 | 7810 | 0.5998 | 0.8858 |
77
+ | 0.0097 | 11.0 | 8591 | 0.5957 | 0.8941 |
78
+ | 0.0044 | 12.0 | 9372 | 0.6237 | 0.8912 |
79
+ | 0.0013 | 13.0 | 10153 | 0.6286 | 0.8929 |
80
+ | 0.0102 | 14.0 | 10934 | 0.6281 | 0.8938 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.20.1
86
+ - Pytorch 1.11.0
87
+ - Datasets 2.1.0
88
+ - Tokenizers 0.12.1