swin-small-finetuned-cifar100

This model is a fine-tuned version of microsoft/swin-small-patch4-window7-224 on the cifar100 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6281
  • Accuracy: 0.8938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.72 1.0 781 0.6691 0.8077
0.6944 2.0 1562 0.4797 0.8495
0.2794 3.0 2343 0.4338 0.869
0.2569 4.0 3124 0.4263 0.879
0.1417 5.0 3905 0.4385 0.8819
0.0961 6.0 4686 0.4720 0.8854
0.0584 7.0 5467 0.4941 0.885
0.0351 8.0 6248 0.5253 0.885
0.0107 9.0 7029 0.5598 0.8887
0.0118 10.0 7810 0.5998 0.8858
0.0097 11.0 8591 0.5957 0.8941
0.0044 12.0 9372 0.6237 0.8912
0.0013 13.0 10153 0.6286 0.8929
0.0102 14.0 10934 0.6281 0.8938

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
28
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train MazenAmria/swin-small-finetuned-cifar100

Evaluation results