Arabic_FineTuningAraBERT_AugV4_k1_task3_organization_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2978
  • Qwk: -0.1846
  • Mse: 1.2978
  • Rmse: 1.1392

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.0645 2 4.3454 0.0 4.3454 2.0846
No log 0.1290 4 2.2549 0.0 2.2549 1.5016
No log 0.1935 6 1.3772 0.0678 1.3772 1.1735
No log 0.2581 8 0.9281 0.0 0.9281 0.9634
No log 0.3226 10 1.0110 -0.0476 1.0110 1.0055
No log 0.3871 12 1.2047 -0.3444 1.2047 1.0976
No log 0.4516 14 0.9172 -0.2222 0.9172 0.9577
No log 0.5161 16 0.8983 0.0 0.8983 0.9478
No log 0.5806 18 0.9134 0.0 0.9134 0.9557
No log 0.6452 20 1.0603 -0.0784 1.0603 1.0297
No log 0.7097 22 0.9632 -0.0185 0.9632 0.9814
No log 0.7742 24 0.9629 0.0 0.9629 0.9813
No log 0.8387 26 0.9685 0.0 0.9685 0.9841
No log 0.9032 28 0.9052 0.0 0.9052 0.9514
No log 0.9677 30 0.9881 -0.0185 0.9881 0.9940
No log 1.0323 32 1.2075 0.0 1.2075 1.0989
No log 1.0968 34 1.2888 0.0 1.2888 1.1353
No log 1.1613 36 1.0739 -0.2222 1.0739 1.0363
No log 1.2258 38 0.9035 0.0 0.9035 0.9505
No log 1.2903 40 0.9170 0.0 0.9170 0.9576
No log 1.3548 42 0.9299 0.0 0.9299 0.9643
No log 1.4194 44 0.8769 0.0 0.8769 0.9364
No log 1.4839 46 0.9029 0.0 0.9029 0.9502
No log 1.5484 48 0.9911 -0.0476 0.9911 0.9955
No log 1.6129 50 0.9837 -0.0342 0.9837 0.9918
No log 1.6774 52 0.8938 -0.0185 0.8938 0.9454
No log 1.7419 54 0.8821 0.0 0.8821 0.9392
No log 1.8065 56 0.9110 0.0 0.9110 0.9544
No log 1.8710 58 0.8745 0.0 0.8745 0.9351
No log 1.9355 60 0.8190 0.0 0.8190 0.9050
No log 2.0 62 0.7849 -0.0185 0.7849 0.8859
No log 2.0645 64 0.8720 0.1538 0.8720 0.9338
No log 2.1290 66 0.9228 -0.0185 0.9228 0.9606
No log 2.1935 68 0.9095 -0.0185 0.9095 0.9537
No log 2.2581 70 0.9259 -0.0185 0.9259 0.9623
No log 2.3226 72 0.9235 -0.2222 0.9235 0.9610
No log 2.3871 74 0.9178 0.0 0.9178 0.9580
No log 2.4516 76 0.9123 0.0 0.9123 0.9552
No log 2.5161 78 0.9324 0.0 0.9324 0.9656
No log 2.5806 80 0.9281 0.0 0.9281 0.9634
No log 2.6452 82 0.9440 -0.0185 0.9440 0.9716
No log 2.7097 84 0.9911 -0.2222 0.9911 0.9955
No log 2.7742 86 0.9857 -0.2222 0.9857 0.9928
No log 2.8387 88 1.0367 -0.2222 1.0367 1.0182
No log 2.9032 90 1.0476 -0.2222 1.0476 1.0235
No log 2.9677 92 1.0485 -0.2222 1.0485 1.0240
No log 3.0323 94 1.0954 -0.2222 1.0954 1.0466
No log 3.0968 96 1.0719 -0.2222 1.0719 1.0353
No log 3.1613 98 1.1567 -0.2222 1.1567 1.0755
No log 3.2258 100 1.2101 -0.2222 1.2101 1.1001
No log 3.2903 102 1.1525 -0.2222 1.1525 1.0735
No log 3.3548 104 1.1651 -0.0185 1.1651 1.0794
No log 3.4194 106 1.3233 -0.3660 1.3233 1.1503
No log 3.4839 108 1.3665 -0.3660 1.3665 1.1690
No log 3.5484 110 1.2144 -0.0185 1.2144 1.1020
No log 3.6129 112 1.2106 0.0149 1.2106 1.1003
No log 3.6774 114 1.2808 -0.2222 1.2808 1.1317
No log 3.7419 116 1.2729 -0.2222 1.2729 1.1282
No log 3.8065 118 1.1844 -0.0185 1.1844 1.0883
No log 3.8710 120 1.1039 -0.0185 1.1039 1.0507
No log 3.9355 122 1.0191 -0.0185 1.0191 1.0095
No log 4.0 124 1.0072 -0.0185 1.0072 1.0036
No log 4.0645 126 0.9959 -0.0185 0.9959 0.9980
No log 4.1290 128 0.9892 -0.0185 0.9892 0.9946
No log 4.1935 130 1.0439 -0.0185 1.0439 1.0217
No log 4.2581 132 1.0962 0.0149 1.0962 1.0470
No log 4.3226 134 1.1861 0.0149 1.1861 1.0891
No log 4.3871 136 1.2487 0.0149 1.2487 1.1174
No log 4.4516 138 1.2765 -0.1538 1.2765 1.1298
No log 4.5161 140 1.2936 0.0149 1.2936 1.1373
No log 4.5806 142 1.2869 -0.1538 1.2869 1.1344
No log 4.6452 144 1.2758 -0.1538 1.2758 1.1295
No log 4.7097 146 1.2475 -0.3453 1.2475 1.1169
No log 4.7742 148 1.2417 0.0149 1.2417 1.1143
No log 4.8387 150 1.2469 -0.1538 1.2469 1.1166
No log 4.9032 152 1.2592 -0.2222 1.2592 1.1222
No log 4.9677 154 1.3525 -0.3660 1.3525 1.1630
No log 5.0323 156 1.2917 -0.2222 1.2917 1.1365
No log 5.0968 158 1.1755 -0.2222 1.1755 1.0842
No log 5.1613 160 1.1856 0.0149 1.1856 1.0888
No log 5.2258 162 1.1547 -0.1846 1.1547 1.0746
No log 5.2903 164 1.1420 -0.2222 1.1420 1.0686
No log 5.3548 166 1.2176 -0.3660 1.2176 1.1035
No log 5.4194 168 1.2462 -0.2222 1.2462 1.1163
No log 5.4839 170 1.1616 -0.2222 1.1616 1.0778
No log 5.5484 172 1.1093 -0.1818 1.1093 1.0532
No log 5.6129 174 1.2220 0.0272 1.2220 1.1054
No log 5.6774 176 1.2411 -0.1000 1.2411 1.1140
No log 5.7419 178 1.1603 0.0149 1.1603 1.0772
No log 5.8065 180 1.1719 -0.1846 1.1719 1.0826
No log 5.8710 182 1.1973 -0.1846 1.1973 1.0942
No log 5.9355 184 1.1874 -0.1818 1.1874 1.0897
No log 6.0 186 1.2143 0.0149 1.2143 1.1019
No log 6.0645 188 1.2547 0.0149 1.2547 1.1201
No log 6.1290 190 1.2610 0.0149 1.2610 1.1229
No log 6.1935 192 1.2104 -0.1818 1.2104 1.1002
No log 6.2581 194 1.1775 -0.3538 1.1775 1.0851
No log 6.3226 196 1.1942 -0.3538 1.1942 1.0928
No log 6.3871 198 1.1992 -0.3538 1.1992 1.0951
No log 6.4516 200 1.1951 -0.3538 1.1951 1.0932
No log 6.5161 202 1.2084 -0.1818 1.2084 1.0993
No log 6.5806 204 1.2040 -0.1818 1.2040 1.0973
No log 6.6452 206 1.2125 -0.3538 1.2125 1.1012
No log 6.7097 208 1.2277 -0.1818 1.2277 1.1080
No log 6.7742 210 1.2427 -0.1818 1.2427 1.1148
No log 6.8387 212 1.2568 -0.1818 1.2568 1.1211
No log 6.9032 214 1.2643 -0.1818 1.2643 1.1244
No log 6.9677 216 1.2734 -0.1818 1.2734 1.1285
No log 7.0323 218 1.2881 -0.1818 1.2881 1.1350
No log 7.0968 220 1.3270 -0.1818 1.3270 1.1520
No log 7.1613 222 1.3619 -0.1818 1.3619 1.1670
No log 7.2258 224 1.3564 -0.1818 1.3564 1.1647
No log 7.2903 226 1.3571 -0.3453 1.3571 1.1650
No log 7.3548 228 1.3488 -0.3453 1.3488 1.1614
No log 7.4194 230 1.3465 -0.3538 1.3465 1.1604
No log 7.4839 232 1.3668 -0.1818 1.3668 1.1691
No log 7.5484 234 1.3563 -0.3538 1.3563 1.1646
No log 7.6129 236 1.3424 -0.3538 1.3424 1.1586
No log 7.6774 238 1.3402 -0.3378 1.3402 1.1577
No log 7.7419 240 1.3372 -0.3378 1.3372 1.1564
No log 7.8065 242 1.3234 -0.3378 1.3234 1.1504
No log 7.8710 244 1.3251 -0.3538 1.3251 1.1511
No log 7.9355 246 1.3260 -0.1818 1.3260 1.1515
No log 8.0 248 1.3401 -0.1818 1.3401 1.1576
No log 8.0645 250 1.3498 -0.3134 1.3498 1.1618
No log 8.1290 252 1.3205 -0.1818 1.3205 1.1491
No log 8.1935 254 1.2949 -0.1846 1.2949 1.1379
No log 8.2581 256 1.2907 -0.3378 1.2907 1.1361
No log 8.3226 258 1.2875 -0.3378 1.2875 1.1347
No log 8.3871 260 1.2686 -0.1871 1.2686 1.1263
No log 8.4516 262 1.2426 -0.1846 1.2426 1.1147
No log 8.5161 264 1.2321 -0.1846 1.2321 1.1100
No log 8.5806 266 1.2322 -0.1818 1.2322 1.1101
No log 8.6452 268 1.2393 -0.1818 1.2393 1.1132
No log 8.7097 270 1.2343 -0.1846 1.2343 1.1110
No log 8.7742 272 1.2370 -0.1846 1.2370 1.1122
No log 8.8387 274 1.2505 -0.1846 1.2505 1.1183
No log 8.9032 276 1.2714 -0.1846 1.2714 1.1276
No log 8.9677 278 1.2886 -0.3453 1.2886 1.1352
No log 9.0323 280 1.2992 -0.1846 1.2992 1.1398
No log 9.0968 282 1.3055 -0.1846 1.3055 1.1426
No log 9.1613 284 1.3060 -0.1818 1.3060 1.1428
No log 9.2258 286 1.3058 -0.1818 1.3058 1.1427
No log 9.2903 288 1.3046 -0.1846 1.3046 1.1422
No log 9.3548 290 1.3065 -0.3453 1.3065 1.1430
No log 9.4194 292 1.3075 -0.3453 1.3075 1.1435
No log 9.4839 294 1.3053 -0.3453 1.3053 1.1425
No log 9.5484 296 1.3027 -0.3453 1.3027 1.1414
No log 9.6129 298 1.3025 -0.1846 1.3025 1.1413
No log 9.6774 300 1.3025 -0.1846 1.3025 1.1413
No log 9.7419 302 1.3004 -0.1846 1.3004 1.1403
No log 9.8065 304 1.2986 -0.1846 1.2986 1.1395
No log 9.8710 306 1.2980 -0.1846 1.2980 1.1393
No log 9.9355 308 1.2978 -0.1846 1.2978 1.1392
No log 10.0 310 1.2978 -0.1846 1.2978 1.1392

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
166
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV4_k1_task3_organization_fold0

Finetuned
(4222)
this model