Arabic_FineTuningAraBERT_AugV4_k1_task3_organization_fold0
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2978
- Qwk: -0.1846
- Mse: 1.2978
- Rmse: 1.1392
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0645 | 2 | 4.3454 | 0.0 | 4.3454 | 2.0846 |
No log | 0.1290 | 4 | 2.2549 | 0.0 | 2.2549 | 1.5016 |
No log | 0.1935 | 6 | 1.3772 | 0.0678 | 1.3772 | 1.1735 |
No log | 0.2581 | 8 | 0.9281 | 0.0 | 0.9281 | 0.9634 |
No log | 0.3226 | 10 | 1.0110 | -0.0476 | 1.0110 | 1.0055 |
No log | 0.3871 | 12 | 1.2047 | -0.3444 | 1.2047 | 1.0976 |
No log | 0.4516 | 14 | 0.9172 | -0.2222 | 0.9172 | 0.9577 |
No log | 0.5161 | 16 | 0.8983 | 0.0 | 0.8983 | 0.9478 |
No log | 0.5806 | 18 | 0.9134 | 0.0 | 0.9134 | 0.9557 |
No log | 0.6452 | 20 | 1.0603 | -0.0784 | 1.0603 | 1.0297 |
No log | 0.7097 | 22 | 0.9632 | -0.0185 | 0.9632 | 0.9814 |
No log | 0.7742 | 24 | 0.9629 | 0.0 | 0.9629 | 0.9813 |
No log | 0.8387 | 26 | 0.9685 | 0.0 | 0.9685 | 0.9841 |
No log | 0.9032 | 28 | 0.9052 | 0.0 | 0.9052 | 0.9514 |
No log | 0.9677 | 30 | 0.9881 | -0.0185 | 0.9881 | 0.9940 |
No log | 1.0323 | 32 | 1.2075 | 0.0 | 1.2075 | 1.0989 |
No log | 1.0968 | 34 | 1.2888 | 0.0 | 1.2888 | 1.1353 |
No log | 1.1613 | 36 | 1.0739 | -0.2222 | 1.0739 | 1.0363 |
No log | 1.2258 | 38 | 0.9035 | 0.0 | 0.9035 | 0.9505 |
No log | 1.2903 | 40 | 0.9170 | 0.0 | 0.9170 | 0.9576 |
No log | 1.3548 | 42 | 0.9299 | 0.0 | 0.9299 | 0.9643 |
No log | 1.4194 | 44 | 0.8769 | 0.0 | 0.8769 | 0.9364 |
No log | 1.4839 | 46 | 0.9029 | 0.0 | 0.9029 | 0.9502 |
No log | 1.5484 | 48 | 0.9911 | -0.0476 | 0.9911 | 0.9955 |
No log | 1.6129 | 50 | 0.9837 | -0.0342 | 0.9837 | 0.9918 |
No log | 1.6774 | 52 | 0.8938 | -0.0185 | 0.8938 | 0.9454 |
No log | 1.7419 | 54 | 0.8821 | 0.0 | 0.8821 | 0.9392 |
No log | 1.8065 | 56 | 0.9110 | 0.0 | 0.9110 | 0.9544 |
No log | 1.8710 | 58 | 0.8745 | 0.0 | 0.8745 | 0.9351 |
No log | 1.9355 | 60 | 0.8190 | 0.0 | 0.8190 | 0.9050 |
No log | 2.0 | 62 | 0.7849 | -0.0185 | 0.7849 | 0.8859 |
No log | 2.0645 | 64 | 0.8720 | 0.1538 | 0.8720 | 0.9338 |
No log | 2.1290 | 66 | 0.9228 | -0.0185 | 0.9228 | 0.9606 |
No log | 2.1935 | 68 | 0.9095 | -0.0185 | 0.9095 | 0.9537 |
No log | 2.2581 | 70 | 0.9259 | -0.0185 | 0.9259 | 0.9623 |
No log | 2.3226 | 72 | 0.9235 | -0.2222 | 0.9235 | 0.9610 |
No log | 2.3871 | 74 | 0.9178 | 0.0 | 0.9178 | 0.9580 |
No log | 2.4516 | 76 | 0.9123 | 0.0 | 0.9123 | 0.9552 |
No log | 2.5161 | 78 | 0.9324 | 0.0 | 0.9324 | 0.9656 |
No log | 2.5806 | 80 | 0.9281 | 0.0 | 0.9281 | 0.9634 |
No log | 2.6452 | 82 | 0.9440 | -0.0185 | 0.9440 | 0.9716 |
No log | 2.7097 | 84 | 0.9911 | -0.2222 | 0.9911 | 0.9955 |
No log | 2.7742 | 86 | 0.9857 | -0.2222 | 0.9857 | 0.9928 |
No log | 2.8387 | 88 | 1.0367 | -0.2222 | 1.0367 | 1.0182 |
No log | 2.9032 | 90 | 1.0476 | -0.2222 | 1.0476 | 1.0235 |
No log | 2.9677 | 92 | 1.0485 | -0.2222 | 1.0485 | 1.0240 |
No log | 3.0323 | 94 | 1.0954 | -0.2222 | 1.0954 | 1.0466 |
No log | 3.0968 | 96 | 1.0719 | -0.2222 | 1.0719 | 1.0353 |
No log | 3.1613 | 98 | 1.1567 | -0.2222 | 1.1567 | 1.0755 |
No log | 3.2258 | 100 | 1.2101 | -0.2222 | 1.2101 | 1.1001 |
No log | 3.2903 | 102 | 1.1525 | -0.2222 | 1.1525 | 1.0735 |
No log | 3.3548 | 104 | 1.1651 | -0.0185 | 1.1651 | 1.0794 |
No log | 3.4194 | 106 | 1.3233 | -0.3660 | 1.3233 | 1.1503 |
No log | 3.4839 | 108 | 1.3665 | -0.3660 | 1.3665 | 1.1690 |
No log | 3.5484 | 110 | 1.2144 | -0.0185 | 1.2144 | 1.1020 |
No log | 3.6129 | 112 | 1.2106 | 0.0149 | 1.2106 | 1.1003 |
No log | 3.6774 | 114 | 1.2808 | -0.2222 | 1.2808 | 1.1317 |
No log | 3.7419 | 116 | 1.2729 | -0.2222 | 1.2729 | 1.1282 |
No log | 3.8065 | 118 | 1.1844 | -0.0185 | 1.1844 | 1.0883 |
No log | 3.8710 | 120 | 1.1039 | -0.0185 | 1.1039 | 1.0507 |
No log | 3.9355 | 122 | 1.0191 | -0.0185 | 1.0191 | 1.0095 |
No log | 4.0 | 124 | 1.0072 | -0.0185 | 1.0072 | 1.0036 |
No log | 4.0645 | 126 | 0.9959 | -0.0185 | 0.9959 | 0.9980 |
No log | 4.1290 | 128 | 0.9892 | -0.0185 | 0.9892 | 0.9946 |
No log | 4.1935 | 130 | 1.0439 | -0.0185 | 1.0439 | 1.0217 |
No log | 4.2581 | 132 | 1.0962 | 0.0149 | 1.0962 | 1.0470 |
No log | 4.3226 | 134 | 1.1861 | 0.0149 | 1.1861 | 1.0891 |
No log | 4.3871 | 136 | 1.2487 | 0.0149 | 1.2487 | 1.1174 |
No log | 4.4516 | 138 | 1.2765 | -0.1538 | 1.2765 | 1.1298 |
No log | 4.5161 | 140 | 1.2936 | 0.0149 | 1.2936 | 1.1373 |
No log | 4.5806 | 142 | 1.2869 | -0.1538 | 1.2869 | 1.1344 |
No log | 4.6452 | 144 | 1.2758 | -0.1538 | 1.2758 | 1.1295 |
No log | 4.7097 | 146 | 1.2475 | -0.3453 | 1.2475 | 1.1169 |
No log | 4.7742 | 148 | 1.2417 | 0.0149 | 1.2417 | 1.1143 |
No log | 4.8387 | 150 | 1.2469 | -0.1538 | 1.2469 | 1.1166 |
No log | 4.9032 | 152 | 1.2592 | -0.2222 | 1.2592 | 1.1222 |
No log | 4.9677 | 154 | 1.3525 | -0.3660 | 1.3525 | 1.1630 |
No log | 5.0323 | 156 | 1.2917 | -0.2222 | 1.2917 | 1.1365 |
No log | 5.0968 | 158 | 1.1755 | -0.2222 | 1.1755 | 1.0842 |
No log | 5.1613 | 160 | 1.1856 | 0.0149 | 1.1856 | 1.0888 |
No log | 5.2258 | 162 | 1.1547 | -0.1846 | 1.1547 | 1.0746 |
No log | 5.2903 | 164 | 1.1420 | -0.2222 | 1.1420 | 1.0686 |
No log | 5.3548 | 166 | 1.2176 | -0.3660 | 1.2176 | 1.1035 |
No log | 5.4194 | 168 | 1.2462 | -0.2222 | 1.2462 | 1.1163 |
No log | 5.4839 | 170 | 1.1616 | -0.2222 | 1.1616 | 1.0778 |
No log | 5.5484 | 172 | 1.1093 | -0.1818 | 1.1093 | 1.0532 |
No log | 5.6129 | 174 | 1.2220 | 0.0272 | 1.2220 | 1.1054 |
No log | 5.6774 | 176 | 1.2411 | -0.1000 | 1.2411 | 1.1140 |
No log | 5.7419 | 178 | 1.1603 | 0.0149 | 1.1603 | 1.0772 |
No log | 5.8065 | 180 | 1.1719 | -0.1846 | 1.1719 | 1.0826 |
No log | 5.8710 | 182 | 1.1973 | -0.1846 | 1.1973 | 1.0942 |
No log | 5.9355 | 184 | 1.1874 | -0.1818 | 1.1874 | 1.0897 |
No log | 6.0 | 186 | 1.2143 | 0.0149 | 1.2143 | 1.1019 |
No log | 6.0645 | 188 | 1.2547 | 0.0149 | 1.2547 | 1.1201 |
No log | 6.1290 | 190 | 1.2610 | 0.0149 | 1.2610 | 1.1229 |
No log | 6.1935 | 192 | 1.2104 | -0.1818 | 1.2104 | 1.1002 |
No log | 6.2581 | 194 | 1.1775 | -0.3538 | 1.1775 | 1.0851 |
No log | 6.3226 | 196 | 1.1942 | -0.3538 | 1.1942 | 1.0928 |
No log | 6.3871 | 198 | 1.1992 | -0.3538 | 1.1992 | 1.0951 |
No log | 6.4516 | 200 | 1.1951 | -0.3538 | 1.1951 | 1.0932 |
No log | 6.5161 | 202 | 1.2084 | -0.1818 | 1.2084 | 1.0993 |
No log | 6.5806 | 204 | 1.2040 | -0.1818 | 1.2040 | 1.0973 |
No log | 6.6452 | 206 | 1.2125 | -0.3538 | 1.2125 | 1.1012 |
No log | 6.7097 | 208 | 1.2277 | -0.1818 | 1.2277 | 1.1080 |
No log | 6.7742 | 210 | 1.2427 | -0.1818 | 1.2427 | 1.1148 |
No log | 6.8387 | 212 | 1.2568 | -0.1818 | 1.2568 | 1.1211 |
No log | 6.9032 | 214 | 1.2643 | -0.1818 | 1.2643 | 1.1244 |
No log | 6.9677 | 216 | 1.2734 | -0.1818 | 1.2734 | 1.1285 |
No log | 7.0323 | 218 | 1.2881 | -0.1818 | 1.2881 | 1.1350 |
No log | 7.0968 | 220 | 1.3270 | -0.1818 | 1.3270 | 1.1520 |
No log | 7.1613 | 222 | 1.3619 | -0.1818 | 1.3619 | 1.1670 |
No log | 7.2258 | 224 | 1.3564 | -0.1818 | 1.3564 | 1.1647 |
No log | 7.2903 | 226 | 1.3571 | -0.3453 | 1.3571 | 1.1650 |
No log | 7.3548 | 228 | 1.3488 | -0.3453 | 1.3488 | 1.1614 |
No log | 7.4194 | 230 | 1.3465 | -0.3538 | 1.3465 | 1.1604 |
No log | 7.4839 | 232 | 1.3668 | -0.1818 | 1.3668 | 1.1691 |
No log | 7.5484 | 234 | 1.3563 | -0.3538 | 1.3563 | 1.1646 |
No log | 7.6129 | 236 | 1.3424 | -0.3538 | 1.3424 | 1.1586 |
No log | 7.6774 | 238 | 1.3402 | -0.3378 | 1.3402 | 1.1577 |
No log | 7.7419 | 240 | 1.3372 | -0.3378 | 1.3372 | 1.1564 |
No log | 7.8065 | 242 | 1.3234 | -0.3378 | 1.3234 | 1.1504 |
No log | 7.8710 | 244 | 1.3251 | -0.3538 | 1.3251 | 1.1511 |
No log | 7.9355 | 246 | 1.3260 | -0.1818 | 1.3260 | 1.1515 |
No log | 8.0 | 248 | 1.3401 | -0.1818 | 1.3401 | 1.1576 |
No log | 8.0645 | 250 | 1.3498 | -0.3134 | 1.3498 | 1.1618 |
No log | 8.1290 | 252 | 1.3205 | -0.1818 | 1.3205 | 1.1491 |
No log | 8.1935 | 254 | 1.2949 | -0.1846 | 1.2949 | 1.1379 |
No log | 8.2581 | 256 | 1.2907 | -0.3378 | 1.2907 | 1.1361 |
No log | 8.3226 | 258 | 1.2875 | -0.3378 | 1.2875 | 1.1347 |
No log | 8.3871 | 260 | 1.2686 | -0.1871 | 1.2686 | 1.1263 |
No log | 8.4516 | 262 | 1.2426 | -0.1846 | 1.2426 | 1.1147 |
No log | 8.5161 | 264 | 1.2321 | -0.1846 | 1.2321 | 1.1100 |
No log | 8.5806 | 266 | 1.2322 | -0.1818 | 1.2322 | 1.1101 |
No log | 8.6452 | 268 | 1.2393 | -0.1818 | 1.2393 | 1.1132 |
No log | 8.7097 | 270 | 1.2343 | -0.1846 | 1.2343 | 1.1110 |
No log | 8.7742 | 272 | 1.2370 | -0.1846 | 1.2370 | 1.1122 |
No log | 8.8387 | 274 | 1.2505 | -0.1846 | 1.2505 | 1.1183 |
No log | 8.9032 | 276 | 1.2714 | -0.1846 | 1.2714 | 1.1276 |
No log | 8.9677 | 278 | 1.2886 | -0.3453 | 1.2886 | 1.1352 |
No log | 9.0323 | 280 | 1.2992 | -0.1846 | 1.2992 | 1.1398 |
No log | 9.0968 | 282 | 1.3055 | -0.1846 | 1.3055 | 1.1426 |
No log | 9.1613 | 284 | 1.3060 | -0.1818 | 1.3060 | 1.1428 |
No log | 9.2258 | 286 | 1.3058 | -0.1818 | 1.3058 | 1.1427 |
No log | 9.2903 | 288 | 1.3046 | -0.1846 | 1.3046 | 1.1422 |
No log | 9.3548 | 290 | 1.3065 | -0.3453 | 1.3065 | 1.1430 |
No log | 9.4194 | 292 | 1.3075 | -0.3453 | 1.3075 | 1.1435 |
No log | 9.4839 | 294 | 1.3053 | -0.3453 | 1.3053 | 1.1425 |
No log | 9.5484 | 296 | 1.3027 | -0.3453 | 1.3027 | 1.1414 |
No log | 9.6129 | 298 | 1.3025 | -0.1846 | 1.3025 | 1.1413 |
No log | 9.6774 | 300 | 1.3025 | -0.1846 | 1.3025 | 1.1413 |
No log | 9.7419 | 302 | 1.3004 | -0.1846 | 1.3004 | 1.1403 |
No log | 9.8065 | 304 | 1.2986 | -0.1846 | 1.2986 | 1.1395 |
No log | 9.8710 | 306 | 1.2980 | -0.1846 | 1.2980 | 1.1393 |
No log | 9.9355 | 308 | 1.2978 | -0.1846 | 1.2978 | 1.1392 |
No log | 10.0 | 310 | 1.2978 | -0.1846 | 1.2978 | 1.1392 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 166
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for MayBashendy/Arabic_FineTuningAraBERT_AugV4_k1_task3_organization_fold0
Base model
aubmindlab/bert-base-arabertv02