metadata
license: mit
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
- LanceaKing/asvspoof2019
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: MattyB95/VIT-ASVspoof2019-ConstantQ-Synthetic-Voice-Detection
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9560060081137611
- name: F1
type: f1
value: 0.9749764456013159
- name: Precision
type: precision
value: 0.995013037809648
- name: Recall
type: recall
value: 0.9557308788078018
language:
- en
VIT-ASVspoof2019-ConstantQ-Synthetic-Voice-Detection
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2115
- Accuracy: 0.9560
- F1: 0.9750
- Precision: 0.9950
- Recall: 0.9557
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0383 | 1.0 | 3173 | 0.1192 | 0.9753 | 0.9864 | 0.9734 | 0.9997 |
0.0158 | 2.0 | 6346 | 0.0505 | 0.9888 | 0.9938 | 0.9911 | 0.9965 |
0.0021 | 3.0 | 9519 | 0.1042 | 0.9849 | 0.9917 | 0.9836 | 0.9998 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0