|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- break_data |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: t5-large-finetuned-break-qdmr-decomposition |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: break_data |
|
type: break_data |
|
config: QDMR |
|
split: validation |
|
args: QDMR |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 0.22169382457557757 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-large-finetuned-break-qdmr-decomposition |
|
|
|
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the break_data dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1729 |
|
- Bleu: 0.2217 |
|
- Brevity Penalty: 0.2926 |
|
- Length Ratio: 0.4487 |
|
- Translation Length: 108954 |
|
- Reference Length: 242845 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 64 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Brevity Penalty | Length Ratio | Translation Length | Reference Length | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------------:|:------------:|:------------------:|:----------------:| |
|
| No log | 1.0 | 346 | 0.2217 | 0.2190 | 0.2973 | 0.4519 | 109738 | 242845 | |
|
| 0.3597 | 2.0 | 692 | 0.1898 | 0.2213 | 0.2944 | 0.4499 | 109245 | 242845 | |
|
| 0.1943 | 3.0 | 1038 | 0.1780 | 0.2213 | 0.2936 | 0.4494 | 109125 | 242845 | |
|
| 0.1943 | 4.0 | 1385 | 0.1722 | 0.2209 | 0.2926 | 0.4486 | 108943 | 242845 | |
|
| 0.1588 | 5.0 | 1731 | 0.1708 | 0.2221 | 0.2938 | 0.4495 | 109159 | 242845 | |
|
| 0.1395 | 6.0 | 2077 | 0.1699 | 0.2209 | 0.2907 | 0.4473 | 108635 | 242845 | |
|
| 0.1395 | 7.0 | 2423 | 0.1699 | 0.2219 | 0.2927 | 0.4487 | 108964 | 242845 | |
|
| 0.1245 | 8.0 | 2770 | 0.1717 | 0.2215 | 0.2924 | 0.4485 | 108909 | 242845 | |
|
| 0.1152 | 9.0 | 3116 | 0.1724 | 0.2215 | 0.2924 | 0.4485 | 108914 | 242845 | |
|
| 0.1152 | 9.99 | 3460 | 0.1729 | 0.2217 | 0.2926 | 0.4487 | 108954 | 242845 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|