ewc_stabilised / README.md
Mardiyyah's picture
Mlr-shared-task-ewc_stabilised
5af906c verified
metadata
license: afl-3.0
base_model: masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
  - accuracy
model-index:
  - name: ewc_stabilised
    results: []

ewc_stabilised

This model is a fine-tuned version of masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1396
  • F1: 0.8317
  • Precision: 0.8305
  • Recall: 0.8328
  • Accuracy: 0.9605

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.3184 0.9993 701 0.1480 0.7895 0.7950 0.7841 0.9511
0.1333 2.0 1403 0.1271 0.8195 0.8148 0.8242 0.9578
0.0975 2.9993 2104 0.1241 0.8289 0.8254 0.8324 0.9598
0.0744 4.0 2806 0.1293 0.8307 0.8313 0.8300 0.9603
0.0596 4.9964 3505 0.1396 0.8317 0.8305 0.8328 0.9605

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1