bioformer-ner-model / README.md
Mardiyyah's picture
uploading custom model to hub
a4a1e96 verified
|
raw
history blame
2.49 kB
metadata
license: apache-2.0
base_model: bioformers/bioformer-16L
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
  - accuracy
model-index:
  - name: cl_ct_custom_model
    results: []

cl_ct_custom_model

This model is a fine-tuned version of bioformers/bioformer-16L on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2590
  • F1: 0.7609
  • Precision: 0.7112
  • Recall: 0.8181
  • Accuracy: 0.9229

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 3407
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.4568 0.9971 259 0.2146 0.8139 0.7920 0.8370 0.9326
0.2115 1.9981 519 0.1907 0.8349 0.8125 0.8586 0.9379
0.1802 2.9990 779 0.1912 0.8407 0.8178 0.8650 0.9394
0.164 4.0 1039 0.1869 0.8449 0.8255 0.8652 0.9401
0.1518 4.9971 1298 0.1819 0.8525 0.8348 0.8710 0.9428
0.1424 5.9981 1558 0.1842 0.8506 0.8351 0.8666 0.9422
0.134 6.9990 1818 0.1869 0.8539 0.8373 0.8712 0.9428
0.128 8.0 2078 0.1889 0.8540 0.8374 0.8712 0.9429
0.1241 8.9971 2337 0.1892 0.8559 0.8401 0.8724 0.9432
0.1199 9.9711 2590 0.1899 0.8552 0.8392 0.8718 0.9431

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1