Marcuswas's picture
End of training
d6f9980 verified
|
raw
history blame
1.73 kB
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: bert-drug-review-to-condition
    results: []

bert-drug-review-to-condition

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4308
  • Accuracy: 0.9209
  • Precision: 0.9061
  • Recall: 0.9209
  • F1: 0.9106

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 113 1.1375 0.7747 0.7301 0.7747 0.7450
No log 2.0 226 0.5595 0.8854 0.8675 0.8854 0.8728
No log 3.0 339 0.4308 0.9209 0.9061 0.9209 0.9106

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1