File size: 2,043 Bytes
d6f9980
 
 
 
aea7293
 
 
 
 
d6f9980
 
 
 
 
 
 
 
aea7293
 
 
e28ef7c
 
d6f9980
 
 
 
 
 
 
 
 
 
 
 
 
 
aea7293
d6f9980
 
 
aea7293
d6f9980
 
 
aea7293
d6f9980
 
aea7293
 
1156752
d6f9980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aea7293
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- 'biology '
- NLP
- text-classification
- drugs
- BERT
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bert-drug-review-to-condition
  results: []
language:
- en
library_name: transformers
datasets:
- Zakia/drugscom_reviews
---

# bert-drug-review-to-condition

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4308
- Accuracy: 0.9209
- Precision: 0.9061
- Recall: 0.9209
- F1: 0.9106

## Model description

Fine-tuning of Bert model with drug-related data for the purpose of text classification

## Intended uses & limitations

Personal project.

## Training and evaluation data

Kallumadi,Surya and Grer,Felix. (2018). Drug Reviews (Drugs.com). UCI Machine Learning Repository. https://doi.org/10.24432/C5SK5S.

## Training procedure
Multiclass classification
The model predicts the 'condition' feature from the 'review' feature, only the first 21 conditions are selected.
The 'review' feature is lowercased, we select only values with at least 16 characters.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 1.0   | 113  | 1.1375          | 0.7747   | 0.7301    | 0.7747 | 0.7450 |
| No log        | 2.0   | 226  | 0.5595          | 0.8854   | 0.8675    | 0.8854 | 0.8728 |
| No log        | 3.0   | 339  | 0.4308          | 0.9209   | 0.9061    | 0.9209 | 0.9106 |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1