Marcuswas commited on
Commit
aea7293
1 Parent(s): d6f9980

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -8
README.md CHANGED
@@ -2,7 +2,11 @@
2
  license: apache-2.0
3
  base_model: bert-base-uncased
4
  tags:
5
- - generated_from_trainer
 
 
 
 
6
  metrics:
7
  - accuracy
8
  - precision
@@ -11,11 +15,11 @@ metrics:
11
  model-index:
12
  - name: bert-drug-review-to-condition
13
  results: []
 
 
 
14
  ---
15
 
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
-
19
  # bert-drug-review-to-condition
20
 
21
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
@@ -28,17 +32,19 @@ It achieves the following results on the evaluation set:
28
 
29
  ## Model description
30
 
31
- More information needed
32
 
33
  ## Intended uses & limitations
34
 
35
- More information needed
36
 
37
  ## Training and evaluation data
38
 
39
- More information needed
40
 
41
  ## Training procedure
 
 
42
 
43
  ### Training hyperparameters
44
 
@@ -65,4 +71,4 @@ The following hyperparameters were used during training:
65
  - Transformers 4.40.0
66
  - Pytorch 2.2.1+cu121
67
  - Datasets 2.19.0
68
- - Tokenizers 0.19.1
 
2
  license: apache-2.0
3
  base_model: bert-base-uncased
4
  tags:
5
+ - 'biology '
6
+ - NLP
7
+ - text-classification
8
+ - drugs
9
+ - BERT
10
  metrics:
11
  - accuracy
12
  - precision
 
15
  model-index:
16
  - name: bert-drug-review-to-condition
17
  results: []
18
+ language:
19
+ - en
20
+ library_name: transformers
21
  ---
22
 
 
 
 
23
  # bert-drug-review-to-condition
24
 
25
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
 
32
 
33
  ## Model description
34
 
35
+ Fine-tuning of Bert model with drug-related data for the purpose of text classification
36
 
37
  ## Intended uses & limitations
38
 
39
+ Personal project.
40
 
41
  ## Training and evaluation data
42
 
43
+ Kallumadi,Surya and Grer,Felix. (2018). Drug Reviews (Drugs.com). UCI Machine Learning Repository. https://doi.org/10.24432/C5SK5S.
44
 
45
  ## Training procedure
46
+ Multiclass classification
47
+ The model predicts the 'condition' feature from the 'review' feature, only the first 21 conditions are selected.
48
 
49
  ### Training hyperparameters
50
 
 
71
  - Transformers 4.40.0
72
  - Pytorch 2.2.1+cu121
73
  - Datasets 2.19.0
74
+ - Tokenizers 0.19.1