Marcos12886's picture
End of training
b79c91e verified
metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilhubert-finetuned-cry-detector
    results: []

distilhubert-finetuned-cry-detector

This model is a fine-tuned version of ntu-spml/distilhubert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2255
  • Accuracy: 0.9883
  • F1: 0.9883
  • Precision: 0.9883
  • Recall: 0.9883
  • Confusion Matrix: [[960, 10], [6, 389]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 123
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Confusion Matrix
0.3124 2.3256 100 0.2739 0.9641 0.9640 0.9640 0.9641 [[948, 22], [27, 368]]
0.2337 4.6512 200 0.2385 0.9736 0.9737 0.9737 0.9736 [[950, 20], [16, 379]]
0.2064 6.9767 300 0.2295 0.9832 0.9832 0.9832 0.9832 [[958, 12], [11, 384]]
0.2023 9.3023 400 0.2277 0.9868 0.9869 0.9870 0.9868 [[957, 13], [5, 390]]
0.2003 11.6279 500 0.2254 0.9875 0.9876 0.9876 0.9875 [[960, 10], [7, 388]]
0.2002 13.9535 600 0.2259 0.9875 0.9876 0.9876 0.9875 [[959, 11], [6, 389]]
0.1994 16.2791 700 0.2255 0.9883 0.9883 0.9883 0.9883 [[960, 10], [6, 389]]
0.1997 18.6047 800 0.2254 0.9883 0.9883 0.9883 0.9883 [[960, 10], [6, 389]]

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Tokenizers 0.19.1