metadata
base_model: BAAI/bge-m3
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:39836
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Seorang pria bertopi biru dan rompi keselamatan oranye berdiri di
persimpangan sambil memegang bendera.
sentences:
- Sekelompok orang menaiki eskalator, banyak dari mereka memegang payung.
- Seseorang berpakaian agar mudah terlihat.
- Seorang pria mengenakan topi keras oranye berdiri di persimpangan jalan.
- source_sentence: Dua anjing saling memandang di luar.
sentences:
- Ada dua anjing di luar.
- Empat anjing saling memandang di dalam.
- >-
Seorang pria di luar gedung bata merah dengan kereta belanja, sepeda,
dan lain-lain.
- source_sentence: Pria itu berdiri.
sentences:
- Seorang pria dan wanita duduk bersama di meja.
- Orang-orang di pasar petani luar ruangan.
- Seorang pria di kota di luar gedung berdiri di tangga.
- source_sentence: Seorang pria sedang tidur.
sentences:
- Seorang pria berselimut sedang tertidur di trotoar.
- Manusia ditutupi spons beraneka warna.
- Seorang pria tunawisma tertidur di trotoar.
- source_sentence: Orang-orang ada di luar.
sentences:
- >-
Seorang pria berbaju kotak-kotak dan sandal putih sedang tertidur sambil
membaca koran.
- Orang-orang berjalan di luar dan mengenakan warna gelap.
- >-
Sekelompok orang sedang makan di sebuah restoran dengan mural seorang
wanita sedang berbelanja di belakang mereka.
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: triplet
name: Triplet
dataset:
name: model evaluation
type: model-evaluation
metrics:
- type: cosine_accuracy
value: 0.9636322566071832
name: Cosine Accuracy
- type: dot_accuracy
value: 0.03636774339281681
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.9625028235825616
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.9636322566071832
name: Euclidean Accuracy
- type: max_accuracy
value: 0.9636322566071832
name: Max Accuracy
SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MarcoAland/Indo-bge-m3")
# Run inference
sentences = [
'Orang-orang ada di luar.',
'Orang-orang berjalan di luar dan mengenakan warna gelap.',
'Sekelompok orang sedang makan di sebuah restoran dengan mural seorang wanita sedang berbelanja di belakang mereka.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
model-evaluation
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9636 |
dot_accuracy | 0.0364 |
manhattan_accuracy | 0.9625 |
euclidean_accuracy | 0.9636 |
max_accuracy | 0.9636 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 39,836 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 5 tokens
- mean: 9.44 tokens
- max: 45 tokens
- min: 5 tokens
- mean: 16.41 tokens
- max: 51 tokens
- min: 6 tokens
- mean: 16.66 tokens
- max: 52 tokens
- Samples:
anchor positive negative Seseorang sedang tidur.
Seorang pemuda tidur siang di jendela sebuah bisnis di pinggir jalan.
Seseorang duduk di kursi yang digantung dengan rantai di taman hiburan.
Seekor anjing sedang berlari.
Seekor anjing abu-abu berlari di sepanjang rumput hijau.
Seekor anjing coklat sedang menatap anjing coklat dan putih yang sedang tidur.
Seorang bayi menangis.
Seorang bayi menangis di tempat tidur bayi.
Seorang bayi berbaring telentang dan tersenyum.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 4,427 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 9.41 tokens
- max: 41 tokens
- min: 5 tokens
- mean: 15.97 tokens
- max: 51 tokens
- min: 5 tokens
- mean: 16.64 tokens
- max: 42 tokens
- Samples:
anchor positive negative Seorang pria sedang tidur.
Seorang pria tidur di rumput di taman.
Seorang pria membaca koran di samping mobil.
Seorang pria sedang membaca buku.
Seorang pria tua duduk di luar sambil membaca buku.
Seorang pria berbaju pelangi berhenti untuk melihat kotak surat.
Anjing coklat melangkah di air.
Anjing coklat berjalan di air saat dia basah kuyup
Anjing coklat sedang tidur di samping air
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 4max_steps
: 500warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 500lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | model-evaluation_max_accuracy |
---|---|---|---|---|
0.0100 | 100 | 0.7797 | 0.6925 | - |
0.0201 | 200 | 0.6337 | 0.6018 | - |
0.0301 | 300 | 0.6129 | 0.5737 | - |
0.0402 | 400 | 0.5982 | 0.5116 | - |
0.0502 | 500 | 0.5504 | 0.4719 | 0.9636 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}