ManojAlexender's picture
End of training
4ab1ef7 verified
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: Roberta-base-Rewritten-commit_messages_v2
    results: []

Roberta-base-Rewritten-commit_messages_v2

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4196
  • Accuracy: 0.7704
  • F1: 0.7707
  • Precision: 0.7811
  • Recall: 0.7704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2288 0.09 100 0.7615 0.6716 0.6578 0.7461 0.6716
0.1103 0.17 200 0.6396 0.7453 0.7452 0.7609 0.7453
0.2204 0.26 300 1.3317 0.6596 0.6334 0.7863 0.6596
0.1872 0.34 400 0.8661 0.6333 0.5996 0.7712 0.6333
0.1261 0.43 500 1.9369 0.7130 0.7023 0.7906 0.7130
0.1902 0.52 600 2.2998 0.6823 0.6695 0.7573 0.6823
0.3639 0.6 700 4.0162 0.6915 0.6815 0.7562 0.6915
0.1655 0.69 800 2.2680 0.6859 0.6715 0.7705 0.6859
0.1534 0.77 900 2.7909 0.7951 0.7937 0.7959 0.7951
0.288 0.86 1000 2.9443 0.7752 0.7751 0.7920 0.7752
0.2261 0.95 1100 2.9976 0.7318 0.7267 0.7810 0.7318
0.162 1.03 1200 2.4699 0.8063 0.8067 0.8096 0.8063
0.0379 1.12 1300 2.6939 0.8051 0.8051 0.8051 0.8051
0.1852 1.2 1400 3.9005 0.7031 0.6940 0.7669 0.7031
0.1258 1.29 1500 2.6666 0.8023 0.8027 0.8042 0.8023
0.1707 1.38 1600 2.8308 0.7892 0.7892 0.7892 0.7892
0.0817 1.46 1700 3.6049 0.7573 0.7497 0.7700 0.7573
0.3516 1.55 1800 2.6816 0.7772 0.7777 0.7846 0.7772
0.5502 1.63 1900 2.2493 0.8131 0.8099 0.8203 0.8131
0.1531 1.72 2000 3.2802 0.7417 0.7407 0.7645 0.7417
0.1112 1.81 2100 1.9678 0.7748 0.7737 0.8010 0.7748
0.1617 1.89 2200 3.0694 0.7501 0.7490 0.7746 0.7501
0.1912 1.98 2300 3.2285 0.7529 0.7530 0.7659 0.7529
0.2725 2.06 2400 3.0008 0.7800 0.7805 0.7826 0.7800
0.1694 2.15 2500 3.5542 0.7290 0.7286 0.7459 0.7290
0.1283 2.24 2600 4.4577 0.7003 0.6944 0.7466 0.7003
0.1321 2.32 2700 3.1128 0.7350 0.7356 0.7411 0.7350
0.0 2.41 2800 4.2938 0.7222 0.7149 0.7828 0.7222
0.0871 2.49 2900 3.9750 0.7266 0.7237 0.7607 0.7266
0.0952 2.58 3000 3.7697 0.7437 0.7424 0.7690 0.7437
0.1034 2.67 3100 3.7283 0.7350 0.7312 0.7764 0.7350
0.2425 2.75 3200 3.4196 0.7704 0.7707 0.7811 0.7704

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1