metadata
datasets:
- Programming-Language/codeagent-python
language:
- en
base_model:
- google/flan-t5-base
pipeline_tag: text-generation
library_name: transformers
license: apache-2.0
flan-python-expert π
This model is a fine-tuned version of google/flan-t5-base
on the codeagent-python
dataset.
It is designed to generate Python code from natural language instructions.
π§ Model Details
- Base Model: FLAN-T5 Base
- Fine-tuned on: Python code dataset (
codeagent-python
) - Task: Text-to-code generation
- Language: English
- Framework: π€ Transformers
- Library:
adapter-transformers
ποΈ Training
The model was trained using the following setup:
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir="flan-python-expert",
evaluation_strategy="epoch",
learning_rate=2e-6,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
num_train_epochs=1,
weight_decay=0.01,
save_total_limit=2,
logging_steps=1,
push_to_hub=False,
)
Trained for 1 epoch
Optimized for low-resource fine-tuning
Training performed using Hugging Face Trainer
Example Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("MalikIbrar/flan-python-expert")
tokenizer = AutoTokenizer.from_pretrained("MalikIbrar/flan-python-expert")
input_text = "Write a Python function to check if a number is prime."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))