|
--- |
|
tags: |
|
- image-to-text |
|
- image-captioning |
|
license: apache-2.0 |
|
language: |
|
- zh |
|
widget: |
|
- src: https://datasets-server.huggingface.co/assets/Maciel/e-commerce-sample-images/--/Maciel--e-commerce-sample-images/train/2/image/image.jpg |
|
example_title: 小耳钉 |
|
- src: https://datasets-server.huggingface.co/assets/Maciel/e-commerce-sample-images/--/Maciel--e-commerce-sample-images/train/5/image/image.jpg |
|
example_title: 短裙 |
|
- src: https://datasets-server.huggingface.co/assets/Maciel/e-commerce-sample-images/--/Maciel--e-commerce-sample-images/train/7/image/image.jpg |
|
example_title: 高跟鞋 |
|
--- |
|
|
|
### 功能介绍 |
|
|
|
该模型功能主要是对图片生成文字描述。模型结构使用Encoder-Decoder结构,其中Encoder端使用BEiT模型,Decoder使用GPT模型。 |
|
|
|
使用中文Muge数据集训练语料,训练5k步,最终验证集loss为0.3737,rouge1为20.419,rouge2为7.3553,rougeL为17.3753,rougeLsum为17.376。 |
|
|
|
[Github项目地址](https://github.com/Macielyoung/Chinese-Image-Caption) |
|
|
|
|
|
|
|
### 如何使用 |
|
|
|
```python |
|
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer |
|
from PIL import Image |
|
|
|
pretrained = "Maciel/Muge-Image-Caption" |
|
model = VisionEncoderDecoderModel.from_pretrained(pretrained) |
|
feature_extractor = ViTFeatureExtractor.from_pretrained(pretrained) |
|
tokenizer = AutoTokenizer.from_pretrained(pretrained) |
|
|
|
image_path = "https://huggingface.co/Maciel/Muge-Image-Caption/blob/main/%E9%AB%98%E8%B7%9F%E9%9E%8B.jpg" |
|
image = Image.open(image_path) |
|
if image.mode != "RGB": |
|
image = image.convert("RGB") |
|
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values |
|
|
|
output_ids = model.generate(pixel_values, **gen_kwargs) |
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
print(preds) |
|
``` |
|
|