jisx's picture
Upload README.md with huggingface_hub
1f464b8 verified
|
raw
history blame
2.1 kB
metadata
library_name: transformers
pipeline_tag: text-generation
language:
  - multilingual
tags:
  - generation
  - question answering
  - instruction tuning
datasets:
  - MBZUAI/Bactrian-X
license: cc-by-nc-4.0

Model Description

This HF repository hosts instruction fine-tuned multilingual BLOOM model using the parallel instruction dataset called Bactrain-X in 52 languages. We progressively add a language during instruction fine-tuning at each time, and train 52 models in total. Then, we evaluate those models in three multilingual benchmarks.

Please refer to our paper for more details.

  • Base model: BLOOM 7B1
  • Instruction languages: English, Chinese, Afrikaans, Arabic, Azerbaijani, Bengali, Czech, German, Spanish, Estonian, Farsi, Finnish, French, Galician, Gujarati, Hebrew, Hindi, Croatian, Indonesian, Italian, Japanese, Georgian, Kazakh, Khmer, Korean, Lithuanian, Latvian, Macedonian, Malayalam, Mongolian, Marathi, Burmese, Nepali, Dutch, Polish, Pashto, Portuguese, Romanian, Russian, Sinhala, Slovenian, Swedish, Swahili, Tamil, Telugu, Thai, Tagalog, Turkish, Ukrainian, Urdu, Vietnamese
  • Instruction language codes: en, zh, af, ar, az, bn, cs, de, es, et, fa, fi, fr, gl, gu, he, hi, hr, id, it, ja, ka, kk, km, ko, lt, lv, mk, ml, mn, mr, my, ne, nl, pl, ps, pt, ro, ru, si, sl, sv, sw, ta, te, th, tl, tr, uk, ur, vi
  • Training method: full-parameter fine-tuning.

Usage

The model checkpoint should be loaded using transformers library.

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MaLA-LM/lucky52-bloom-7b1-no-51")
model = AutoModelForCausalLM.from_pretrained("MaLA-LM/lucky52-bloom-7b1-no-51")

Citation

@misc{lucky52,
  title         = "Lucky 52: How Many Languages Are Needed to Instruction Fine-Tune Large Language Models?",
  author        = "Shaoxiong Ji and Pinzhen Chen",
  year          = "2024",
  eprint        = "2404.04850",
  archiveprefix = "arXiv",
  primaryclass  = "cs.CL"
}