File size: 2,093 Bytes
9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 9a13831 3504314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
library_name: transformers
language:
- de
base_model:
- GerMedBERT/medbert-512
pipeline_tag: token-classification
---
# Model Card for Model ID
We fine-tuned our base model for 71 epochs on the Ca dataset, epoch 68 showed the best macro average f1 score on the evaluation dataset.
## Metrics
eval_AVGf1 0.8032336746529752
eval_DIAGNOSIS.f1 0.7955801104972375
eval_DIAGNOSIS.precision 0.7656557699881843
eval_DIAGNOSIS.recall 0.82793867120954
eval_DIAGNOSTIC.f1 0.8097188097188096
eval_DIAGNOSTIC.precision 0.7797055730809674
eval_DIAGNOSTIC.recall 0.8421351504826803
eval_DRUG.f1 0.9214929214929215
eval_DRUG.precision 0.9002514668901928
eval_DRUG.recall 0.9437609841827768
eval_MEDICAL_FINDING.f1 0.7812833218340337
eval_MEDICAL_FINDING.precision 0.7604395604395604
eval_MEDICAL_FINDING.recall 0.8033019476331743
eval_THERAPY.f1 0.7080932097218742
eval_THERAPY.precision 0.6731777036684136
eval_THERAPY.recall 0.7468287526427061
eval_accuracy 0.9415681083480303
eval_f1 0.788057764075937
eval_loss 0.46635299921035767
eval_precision 0.7625447465929787
eval_recall 0.8153370937416062
eval_runtime 36.5944
eval_samples_per_second 223.586
eval_steps_per_second 27.955
test_AVGf1 0.765773820622575
test_DIAGNOSIS.f1 0.7267739575713241
test_DIAGNOSIS.precision 0.742803738317757
test_DIAGNOSIS.recall 0.711421410669531
test_DIAGNOSTIC.f1 0.7813144034806503
test_DIAGNOSTIC.precision 0.77124773960217
test_DIAGNOSTIC.recall 0.7916473317865429
test_DRUG.f1 0.9209993247805537
test_DRUG.precision 0.9021164021164021
test_DRUG.recall 0.9406896551724138
test_MEDICAL_FINDING.f1 0.7354366197183099
test_MEDICAL_FINDING.precision 0.6959164089988271
test_MEDICAL_FINDING.recall 0.7797156851033329
test_THERAPY.f1 0.6643447975620373
test_THERAPY.precision 0.6411764705882353
test_THERAPY.recall 0.6892502258355917
test_accuracy 0.9330358352068041
test_f1 0.7461369909791981
test_loss 0.5957663655281067
test_precision 0.7219958145170173
test_recall 0.7719484190072425
test_runtime 42.5823
test_samples_per_second 222.839
test_steps_per_second 27.875
|