Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,111 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
75 |
|
76 |
-
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
102 |
|
103 |
-
|
104 |
|
105 |
-
|
106 |
|
107 |
-
|
108 |
|
109 |
-
|
110 |
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
language:
|
4 |
+
- de
|
5 |
+
base_model:
|
6 |
+
- GerMedBERT/medbert-512
|
7 |
+
pipeline_tag: token-classification
|
8 |
---
|
9 |
|
10 |
# Model Card for Model ID
|
11 |
|
12 |
+
We fine-tuned our base model for 71 epochs on the Ca dataset, epoch 68 showed the best macro average f1 score on the evaluation dataset.
|
13 |
|
14 |
|
15 |
+
## Metrics
|
16 |
|
17 |
+
eval_AVGf1 0.8032336746529752
|
18 |
|
19 |
+
eval_DIAGNOSIS.f1 0.7955801104972375
|
20 |
|
21 |
+
eval_DIAGNOSIS.precision 0.7656557699881843
|
22 |
|
23 |
+
eval_DIAGNOSIS.recall 0.82793867120954
|
24 |
|
25 |
+
eval_DIAGNOSTIC.f1 0.8097188097188096
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
eval_DIAGNOSTIC.precision 0.7797055730809674
|
28 |
|
29 |
+
eval_DIAGNOSTIC.recall 0.8421351504826803
|
30 |
|
31 |
+
eval_DRUG.f1 0.9214929214929215
|
|
|
|
|
32 |
|
33 |
+
eval_DRUG.precision 0.9002514668901928
|
34 |
|
35 |
+
eval_DRUG.recall 0.9437609841827768
|
36 |
|
37 |
+
eval_MEDICAL_FINDING.f1 0.7812833218340337
|
38 |
|
39 |
+
eval_MEDICAL_FINDING.precision 0.7604395604395604
|
40 |
|
41 |
+
eval_MEDICAL_FINDING.recall 0.8033019476331743
|
42 |
|
43 |
+
eval_THERAPY.f1 0.7080932097218742
|
44 |
|
45 |
+
eval_THERAPY.precision 0.6731777036684136
|
46 |
|
47 |
+
eval_THERAPY.recall 0.7468287526427061
|
48 |
|
49 |
+
eval_accuracy 0.9415681083480303
|
50 |
|
51 |
+
eval_f1 0.788057764075937
|
52 |
|
53 |
+
eval_loss 0.46635299921035767
|
54 |
|
55 |
+
eval_precision 0.7625447465929787
|
56 |
|
57 |
+
eval_recall 0.8153370937416062
|
58 |
|
59 |
+
eval_runtime 36.5944
|
60 |
|
61 |
+
eval_samples_per_second 223.586
|
62 |
|
63 |
+
eval_steps_per_second 27.955
|
64 |
|
65 |
+
test_AVGf1 0.765773820622575
|
66 |
|
67 |
+
test_DIAGNOSIS.f1 0.7267739575713241
|
68 |
|
69 |
+
test_DIAGNOSIS.precision 0.742803738317757
|
70 |
|
71 |
+
test_DIAGNOSIS.recall 0.711421410669531
|
72 |
|
73 |
+
test_DIAGNOSTIC.f1 0.7813144034806503
|
74 |
|
75 |
+
test_DIAGNOSTIC.precision 0.77124773960217
|
76 |
|
77 |
+
test_DIAGNOSTIC.recall 0.7916473317865429
|
78 |
|
79 |
+
test_DRUG.f1 0.9209993247805537
|
80 |
|
81 |
+
test_DRUG.precision 0.9021164021164021
|
82 |
|
83 |
+
test_DRUG.recall 0.9406896551724138
|
84 |
|
85 |
+
test_MEDICAL_FINDING.f1 0.7354366197183099
|
86 |
|
87 |
+
test_MEDICAL_FINDING.precision 0.6959164089988271
|
88 |
|
89 |
+
test_MEDICAL_FINDING.recall 0.7797156851033329
|
90 |
|
91 |
+
test_THERAPY.f1 0.6643447975620373
|
92 |
|
93 |
+
test_THERAPY.precision 0.6411764705882353
|
94 |
|
95 |
+
test_THERAPY.recall 0.6892502258355917
|
96 |
|
97 |
+
test_accuracy 0.9330358352068041
|
98 |
|
99 |
+
test_f1 0.7461369909791981
|
100 |
|
101 |
+
test_loss 0.5957663655281067
|
102 |
|
103 |
+
test_precision 0.7219958145170173
|
104 |
|
105 |
+
test_recall 0.7719484190072425
|
106 |
|
107 |
+
test_runtime 42.5823
|
108 |
|
109 |
+
test_samples_per_second 222.839
|
110 |
|
111 |
+
test_steps_per_second 27.875
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|