MR-Eder's picture
Update README.md
34dea73 verified
metadata
library_name: transformers
language:
  - de
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - MR-Eder/GER-TTS-50-Conversations
metrics:
  - wer
model-index:
  - name: Whisper Large v3 Turbo German - GRAG
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: GER-TTS-50-Conversations
          type: MR-Eder/GER-TTS-50-Conversations
          config: default
          split: None
          args: 'config: de, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 15.170289725316048

Whisper Small German - GRAG

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the GER-TTS-50-Conversations dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4391
  • Wer: 15.1703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.066 8.3333 1000 0.3653 15.4640
0.0038 16.6667 2000 0.4180 15.0235
0.0006 25.0 3000 0.4340 15.1882
0.0004 33.3333 4000 0.4391 15.1703

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3