ML4TSP Pretrained Files 2024-02-02

This repository primarily stores the pretrained files for ML4TSP. All the files in this repository have a last update date prior to 2024-02-02.

1. Dataset

1.1 Supervised Learning Training Dataset

File Naming Convention: tsp{nodes_num}_{distribution}_{solver(params)}_{size}.txt

1.2 Test Dataset (Uniform)

File Naming Convention: tsp{nodes_num}_{solver(params)}_{avg_length}.txt

Problem Scale Test Distribution Size
TSP50 tsp50_concorde_5.68759.txt uniform 1280
TSP100 tsp100_concorde_7.75585.txt uniform 1280
TSP500 tsp500_concorde_16.54581.txt uniform 128
TSP1000 tsp1000_concorde_23.11812.txt uniform 128
TSP10000 tsp10000_concorde_large_71.84185.txt uniform 16

2. Model Parameters

2.1 NAR Model Parameters

Pretrained File Net Type Layer Embed Hidden Out Epoch(select)
tsp50_diffusion.pt gnn 12 128 256 2 100(?)
tsp50_dimes.pt gnn 12 128 256 2 405/500step
tsp50_gnn.pt gnn 12 128 256 2 100(96)
tsp50_gnn_wise.pt gnn 12 128 256 2 100(76)
tsp50_gnn4reg.pt gnn 12 128 256 2 100(62)
tsp50_us.pt sag 3 64 64 50 100(3)
tsp100_diffusion.pt gnn 12 128 256 2 50(?)
tsp100_dimes.pt gnn 12 128 256 2 240/250step
tsp100_gnn.pt gnn 12 128 256 2 50(50)
tsp100_gnn_wise.pt gnn 12 128 256 2 50(48)
tsp100_gnn4reg.pt gnn 12 128 256 2 50(18)
tsp100_us.pt sag 3 64 64 50 50(3)
tsp500_diffusion.pt gnn 12 128 256 2 50(?)
tsp500_dimes.pt gnn 12 128 256 2 66/100step
tsp500_gnn.pt gnn 12 128 256 2 50(22)
tsp500_gnn_wise.pt gnn 12 128 256 2 50(14)
tsp1000_diffusion.pt gnn 12 128 256 2 50(?)
tsp1000_gnn_wise.pt gnn 12 128 256 2 50(44)

2.2 AR Model Parameters

Pretrained File Net Type Layer Embed Heads Baseline Epoch(select)
tsp50_am.pt gat 3 128 8 rollout 360(360)
tsp50_pomo.pt gat 3 128 8 shared 360(360)
tsp50_symnco.pt gat 3 128 8 no 360(360)
tsp100_am.pt gat 3 128 8 rollout 500(500)
tsp100_pomo.pt gat 3 128 8 shared 100(100)
tsp100_symnco.pt gat 3 128 8 no 330(329)

3. Training Details

3.1 NAR Model

  • lr_scheduler: "cosine-decay" (torch.optim.lr_scheduler.CosineAnnealingLR)
  • learning-rate: 0.003(initial)
  • optimizer: "AdamW" (torch.optim.AdamW)

3.2 AR Model

  • lr_scheduler: None
  • learning-rate: 0.0001(fix)
  • optimizer: "Adam" (torch.optim.Adam)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.