|
--- |
|
license: mit |
|
pipeline_tag: object-detection |
|
tags: |
|
- License-Plate-Recognizer |
|
- Yolov8m |
|
- Object detection |
|
--- |
|
**License Plate Detection Model using YOLOv8** |
|
============================================= |
|
|
|
**Model Description** |
|
-------------------- |
|
|
|
This is a deep learning model for detecting and cropping license plates in images, trained using the YOLOv8 object detection architecture. The model takes an image of a vehicle as input and returns a cropped image of the detected license plate. |
|
|
|
**Dataset** |
|
---------- |
|
|
|
The model was trained on a dataset of 500 images of vehicles with annotated license plates. The dataset was curated to include a variety of license plate types, angles, and lighting conditions. |
|
|
|
**Model Training** |
|
----------------- |
|
|
|
The model was trained using the YOLOv8 architecture with the following hyperparameters: |
|
|
|
* Batch size: 32 |
|
* Epochs: 50 |
|
* Learning rate: 0.001 |
|
* Optimizer: Adam |
|
* Loss function: Mean Average Precision (MAP) |
|
|
|
**Model Performance** |
|
--------------------- |
|
![confusion_matrix.png](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/6Wr5WE6dPC_6AisU07hEy.png) |
|
The model achieves the following performance metrics on the validation set: |
|
![val_batch1_pred.jpg](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/V37GbUwKr-CXaNunUOdqc.jpeg) |
|
|
|
* mAP (mean Average Precision): 0.92 |
|
* AP (Average Precision) for license plates: 0.95 |
|
* Recall: 0.93 |
|
* Precision: 0.94 |
|
![results.png](https://cdn-uploads.huggingface.co/production/uploads/6537b44c01281b544234189c/_dDT5Bp5l4nGoTf8k9kMs.png) |
|
**Usage** |
|
----- |
|
|
|
To use this model, you can follow these steps: |
|
|
|
1. Install the required libraries: `pip install ultralytics` |
|
2. Load the model: `model = torch.hub.load('ultralytics/yolov8', 'custom', path='path/to/model.pt')` |
|
3. Load the input image: `img = cv2.imread('path/to/image.jpg')` |
|
4. Preprocess the input image: `img = cv2.resize(img, (640, 480))` |
|
5. Run the model: `results = model(img)` |
|
6. Extract the cropped license plate image: `license_plate_img = results.crop[0].cpu().numpy()` |
|
|
|
**Example Code** |
|
-------------- |
|
|
|
Here is an example code snippet to get you started: |
|
```python |
|
import cv2 |
|
import torch |
|
|
|
# Load the model |
|
model = torch.hub.load('ultralytics/yolov8', 'custom', path='path/to/model.pt') |
|
|
|
# Load the input image |
|
img = cv2.imread('path/to/image.jpg') |
|
|
|
# Preprocess the input image |
|
img = cv2.resize(img, (640, 480)) |
|
|
|
# Run the model |
|
results = model(img) |
|
|
|
# Extract the cropped license plate image |
|
license_plate_img = results.crop[0].cpu().numpy() |
|
cv2.imwrite('license_plate.jpg', license_plate_img) |