Edit model card

Model Card for Model ID

base_model : google/gemma-2b-it

Basic usage

# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("MDDDDR/gemma-2b-it-v0.1")
model = AutoModelForCausalLM.from_pretrained(
    "MDDDDR/gemma-2b-it-v0.1",
    device_map="auto",
    torch_dtype=torch.bfloat32
)

input_text = "사과가 뭐야?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Training dataset

dataset : sean0042/KorMedMCQA

lora_config and bnb_config in Training

bnd_config = BitsAndBytesConfig(
  load_in_4bit = True,
  bnb_4bit_use_double_quant = True,
  bnb_4bit_quant_type = 'nf4',
  bnb_4bit_compute_dtype = torch.bfloat16
)

lora_config = LoraConfig(
  r = 32,
  lora_alpha = 32,
  lora_dropout = 0.05,
  target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']
)

Hardware

A100 40GB x 1

Downloads last month
35
Safetensors
Model size
2.51B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train MDDDDR/gemma-2b-it-v0.1