Model Card for Model ID

base_model : google-bert/bert-base-uncased

hidden_size : 768

max_position_embeddings : 512

num_attention_heads : 12

num_hidden_layers : 12

vocab_size : 30522

Basic usage

from transformers import AutoTokenizer, AutoModelForTokenClassification
import numpy as np

# match tag
id2tag = {0:'O', 1:'B_MT', 2:'I_MT'}

# load model & tokenizer
MODEL_NAME = 'MDDDDR/bert_base_uncased_NER'

model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

# prepare input
text = 'mental disorder can also contribute to the development of diabetes through various mechanism including increased stress, poor self care behavior, and adverse effect on glucose metabolism.'
tokenized = tokenizer(text, return_tensors='pt')

# forward pass
output = model(**tokenized)

# result
pred = np.argmax(output[0].cpu().detach().numpy(), axis=2)[0][1:-1]

# check pred
for txt, pred in zip(tokenizer.tokenize(text), pred):
    print("{}\t{}".format(id2tag[pred], txt))
    # B_MT mental 
    # B_MT disorder 

Framework versions

  • transformers : 4.39.1
  • torch : 2.1.0+cu121
  • datasets : 2.18.0
  • tokenizers : 0.15.2
  • numpy : 1.20.0
Downloads last month
19
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Collection including MDDDDR/bert_base_uncased_NER