|
--- |
|
license: apache-2.0 |
|
library_name: MoG |
|
--- |
|
|
|
# MoG: Motion-Aware Generative Frame Interpolation |
|
|
|
<!-- <p style="display: flex; flex-direction: column; justify-content: center; align-items: center;"> |
|
<div style="width: 100%; text-align: center; margin-bottom: 4px;"> |
|
<img src="examples/1.gif" style="zoom:32%;"> |
|
<img src="examples/2.gif" style="zoom:32%;"> |
|
<img src="examples/3.gif" style="zoom:32%;"> |
|
</div> |
|
<div style="width: 100%; text-align: center;"> |
|
<img src="examples/4.gif" style="zoom:32%;"> |
|
<img src="examples/5.gif" style="zoom:32%;"> |
|
<img src="examples/6.gif" style="zoom:32%;"> |
|
</div> |
|
</p> |
|
--> |
|
<div style="text-align: center;"> |
|
<img src="examples/1.gif" style="width: 32%; display: inline-block;"> |
|
<img src="examples/2.gif" style="width: 32%; display: inline-block;"> |
|
<img src="examples/3.gif" style="width: 32%; display: inline-block;"> |
|
</div> |
|
<div style="text-align: center;"> |
|
<img src="examples/4.gif" style="width: 32%; display: inline-block;"> |
|
<img src="examples/5.gif" style="width: 32%; display: inline-block;"> |
|
<img src="examples/6.gif" style="width: 32%; display: inline-block;"> |
|
</div> |
|
|
|
MoG is a generative video frame interpolation (VFI) model, designed to synthesize intermediate frames between two input frames. |
|
|
|
MoG is the first VFI framework to bridge the gap between flow-based stability and generative flexibility. We introduce a dual-level guidance injection design to constrain generated motion using motion trajectories derived from optical flow. To enhance the generative model's ability to dynamically correct flow errors, we implement encoder-only guidance injection and selective parameter fine-tuning. As a result, MoG achieves significant improvements over existing open-source generative VFI methods, delivering superior performance in both real-world and animated scenarios. |
|
|
|
Source code is available at [https://github.com/MCG-NJU/MoG-VFI](https://github.com/MCG-NJU/MoG-VFI). |
|
|
|
## Network Arichitecture |
|
|
|
 |
|
|
|
## Model Description |
|
|
|
- **Developed by:** Nanjing University, Tencent PCG |
|
- **Model type:** Generative video frame interploation model, takes two still video frames as input. |
|
- **Arxiv paper**: [https://arxiv.org/pdf/2501.03699](https://arxiv.org/pdf/2501.03699) |
|
- **Project page:** [https://mcg-nju.github.io/MoG_Web/](https://mcg-nju.github.io/MoG_Web/) |
|
- **Repository**: [https://github.com/MCG-NJU/MoG-VFI](https://github.com/MCG-NJU/MoG-VFI) |
|
- **License:** Apache 2.0 license. |
|
|
|
# Usage |
|
|
|
We provide two model checkpoints: `real.ckpt` for real-world scenes and `ani.ckpt` for animation scenes. For detailed instructions on loading the checkpoints and performing inference, please refer to our [official repository](https://github.com/MCG-NJU/MoG-VFI). |
|
|
|
## Citation |
|
|
|
If you find our code useful or our work relevant, please consider citing: |
|
|
|
``` |
|
@article{zhang2025motion, |
|
title={Motion-Aware Generative Frame Interpolation}, |
|
author={Zhang, Guozhen and Zhu, Yuhan and Cui, Yutao and Zhao, Xiaotong and Ma, Kai and Wang, Limin}, |
|
journal={arXiv preprint arXiv:2501.03699}, |
|
year={2025} |
|
} |
|
``` |