File size: 12,070 Bytes
2bff5cb
 
 
 
539f2aa
2bff5cb
 
35cb587
2bff5cb
 
 
 
 
539f2aa
b6ec598
eb434af
539f2aa
2bff5cb
 
 
 
 
 
 
 
 
f4eb07a
2bff5cb
 
35cb587
539f2aa
 
 
2bff5cb
 
539f2aa
f4eb07a
35cb587
f4eb07a
539f2aa
 
 
 
 
 
 
 
 
974122b
9d202ad
539f2aa
 
 
 
 
 
 
 
 
 
b6ec598
539f2aa
 
 
 
 
 
b6ec598
539f2aa
 
 
 
 
f4eb07a
539f2aa
 
f4eb07a
539f2aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6ec598
539f2aa
35cb587
539f2aa
 
 
 
 
 
 
 
b500195
539f2aa
35cb587
539f2aa
 
 
b6ec598
539f2aa
35cb587
539f2aa
 
f4eb07a
 
2bff5cb
77338b3
2bff5cb
539f2aa
2bff5cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35cb587
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
license: mit
language:
- en
- ar
base_model:
- qwen2-VL-7B
pipeline_tag: image-text-to-text
tags:
- LMM
- Arabic
---

<div style="display: flex; align-items: center;">
  <img src="assets_hf/AIN.png" width="10%" alt="logo" style="margin-right: 10px;" />
  <h1 style="margin: 0; font-size: 28px;";">AIN: The Arabic INclusive Large Multimodal Model</h1>
</div>

[Ahmed Heakl](https://huggingface.co/ahmedheakl) <sup> * </sup> &nbsp;
[Sara Ghaboura](https://huggingface.co/SLMLAH) <sup> * </sup> &nbsp;
[Omkar Thawakar](https://omkarthawakar.github.io) &nbsp;
[Fahad Shahbaz Khan](https://scholar.google.com/citations?hl=en&user=zvaeYnUAAAAJ) &nbsp;
[Hisham Cholakkal](https://scholar.google.com/citations?hl=en&user=bZ3YBRcAAAAJ) &nbsp;
[Rao M. Anwer](https://scholar.google.com/citations?hl=en&user=_KlvMVoAAAAJ) &nbsp;
[Salman Khan](https://scholar.google.com/citations?hl=en&user=M59O9lkAAAAJ)
<br>
<em> <sup> *Equal Contribution  </sup> </em>
<br>
#### **Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE**
[![arXiv](https://img.shields.io/badge/arXiv-2502.00094-3399FF)](https://arxiv.org/abs/2502.00094)
[![Our Page](https://img.shields.io/badge/Visit-Our%20Page-8C7AFF?style=flat)](https://mbzuai-oryx.github.io/AIN/)
[![GitHub issues](https://img.shields.io/github/issues/mbzuai-oryx/Camel-Bench?color=FFF359&label=issues&style=flat)](https://github.com/mbzuai-oryx/AIN/issues)
[![GitHub stars](https://img.shields.io/github/stars/mbzuai-oryx/AIN?color=FF6A07&style=flat)](https://github.com/mbzuai-oryx/AIN/stargazers)
[![GitHub license](https://img.shields.io/github/license/mbzuai-oryx/Camel-Bench?color=FF6666)](https://github.com/mbzuai-oryx/AIN/blob/main/LICENSE)

---

https://github.com/mbzuai-oryx/AIN

<div class="abstract-container">
  <h2>Abstract</h2>
     <div class="abstract-content">
        <p>
           Amid the swift progress of large language models (LLMs) and their evolution into large multimodal models (LMMs), significant strides have been made in high-resource languages such as English and Chinese. While Arabic LLMs have seen notable progress, Arabic LMMs remain largely unexplored, often narrowly focusing on a few specific aspects of the language and visual understanding. To bridge this gap, we introduce <b><em>AIN - the Arabic Inclusive Multimodal Model-</em></b> designed to excel across diverse domains.
           AIN is an English-Arabic <b>bilingual LMM</b> designed to excel in English and Arabic, leveraging carefully constructed <b>3.6 million</b> high-quality Arabic-English multimodal data samples. AIN demonstrates state-of-the-art Arabic performance, while also possessing strong English-language visual capabilities.
        </p>
    </div>
 </div>


  
 ## 🌟 Key Features
 - The **first Arabic-centric inclusive Large Multimodal Model (LMM)** trained on **3.6M samples**.
 - Includes **35% authentic Arabic data** within its Arabic data subset.
 - Achieves **superior performance compared to open- and closed-source models** (e.g., GPT-4o) and open-source models (e.g., Qwen2-VL-7B) across tasks such as OCR and specialized domains.
 - Demonstrates **robust bilingual capabilities** (Arabic/English), **validated** through **comprehensive testing** and **human evaluation** across 17 Arab countries.
 - Exhibits **advanced cultural understanding** and domain expertise in fields such as **medical imaging**, **agriculture**, and **scientific visualization**.


<p align="center">
   <img src="assets_hf/intro_bar.png" width="70%" alt="intro_bar"  style="margin-right: 2px";/>
   <h6>
       <em>  <b>Figure 1.</b> Comparative performance of AIN-7B against other models across key domains, including OCR & Document Understanding, Remote Sensing, Agricultural Understanding, and overall performance across all domains. </em>
   </h6>
</p> 

<p align="center" >
   <img src="assets_hf/radar_chart.png" width="52%" alt="radar_chart"  style="margin-right: 2px";/>
 <h6>
       <em>  <b>Figure 2.</b> showcases a comprehensive performance analysis of AIN-7B across CAMEL-Bench domains, comparing it with prominent closed-source models as well as open-source counterparts. <strong>OCR:</strong> "OCR & Document Understanding",  <strong>Video:</strong> "General Video & Multi-Image Understanding",  <strong>RS:</strong> "Remote Sensing Understanding", <strong>CDT:</strong> "Chart, Diagram & Table Understanding",  <strong>Agro.:</strong> "Agricultural Image Understanding", <strong>Cultural:</strong> "Cultural-Specific Understanding", <strong>Medical:</strong> "Medical Image Understanding".
       </em> 
 </h6>
  
---
## βš–οΈ Quantitative Evaluation and Results
AIN demonstrates state-of-the-art performance across diverse domains, surpassing both open- and closed-source models. Notably, it achieves an aggregate performance score of 63.77%, with significant gains in OCR, remote sensing, and agricultural image understanding.

<div align="center" >
<table>
    <caption>
        <h6>
        <strong>Table 1. Performance comparison of AIN and different closed- and open-source LMMs across CAMEL-Bench domains.</strong> 
        <br> <em>Best performance is marked with πŸ₯‡; second-best is πŸ₯ˆ.</em>
            <strong>OCR</strong>: "OCR & Document Understanding", 
            <strong>Video</strong>: "General Video & Multi-Image Understanding", 
            <strong>RS</strong>: "Remote Sensing Understanding", 
            <strong>CDT</strong>: "Chart, Diagram & Table Understanding", 
            <strong>Agro.</strong>: "Agricultural Image Understanding", 
            <strong>Cult.</strong>: "Cultural-Specific Understanding",  
            <strong>Med.</strong>: "Medical Image Understanding".
        </h6>
    </caption>
    <thead>
        <tr style="background-color: #e0e0e0;">
            <th>Models</th>
            <th>VQA</th>
            <th>OCR</th>
            <th>Video</th>
            <th>RS</th>
            <th>CDT</th>
            <th>Agro.</th>
            <th>Cult.</th>
            <th>Med.</th>
            <th style="background-color: #d0d0d0;">Total</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td>GPT-4o</td>
            <td>πŸ₯ˆ55.15</td>
            <td>πŸ₯ˆ54.98</td>
            <td>πŸ₯‡69.65</td>
            <td>πŸ₯ˆ27.36</td>
            <td>πŸ₯ˆ62.35</td>
            <td>πŸ₯ˆ80.75</td>
            <td>πŸ₯‡80.86</td>
            <td>πŸ₯‡49.91</td>
            <td style="background-color: #d0d0d0;">πŸ₯ˆ60.13</td>
        </tr>
        <tr>
            <td>GPT-4o-mini</td>
            <td>48.83</td>
            <td>39.38</td>
           <td>πŸ₯ˆ66.28</td>
            <td>16.93</td>
            <td>56.37</td>
            <td>78.80</td>
            <td>65.92</td>
           <td>πŸ₯ˆ47.37</td>
            <td style="background-color: #d0d0d0;">52.49</td>
        </tr>
        <tr>
            <td>Gemini-1.5-Pro</td>
            <td>46.68</td>
            <td>28.68</td>
            <td>42.95</td>
            <td>17.07</td>
            <td>47.06</td>
            <td>72.14</td>
            <td>56.24</td>
            <td>33.78</td>
            <td style="background-color: #d0d0d0;">52.38</td>
        </tr>
        <tr>
            <td>Gemini-1.5-flash</td>
            <td>45.59</td>
            <td>27.58</td>
            <td>53.31</td>
            <td>14.95</td>
            <td>48.26</td>
            <td>76.07</td>
            <td>46.54</td>
            <td>42.87</td>
            <td style="background-color: #d0d0d0;">44.40</td>
        </tr>
        <tr>
            <td>InternVL-8B </td>
            <td>30.41 </td>
            <td>15.91 </td>
            <td>51.42 </td>
            <td>5.36 </td>
            <td>30.27 </td>
            <td>44.47 </td>
            <td>20.88 </td>
            <td>29.48 </td>
            <td style="background-color: #d0d0d0;">28.52 </td>
        </tr>
        <tr>
            <td>InternVL2.5-1B </td>
            <td>27.22 </td>
            <td>19.45 </td>
            <td>38.20 </td>
            <td>3.39 </td>
            <td>30.75 </td>
            <td>39.53 </td>
            <td>35.68 </td>
            <td>21.27 </td>
            <td style="background-color: #d0d0d0;">26.94 </td>
        </tr>
        <tr>
            <td>Qwen-VL-2B </td>
            <td>41.02 </td>
            <td>22.93 </td>
            <td>38.90 </td>
            <td>12.56 </td>
            <td>27.83 </td>
            <td>52.02 </td>
            <td>34.28 </td>
            <td>29.12 </td>
            <td style="background-color: #d0d0d0;">32.33 </td>
        </tr>
        <tr>
            <td>AIN-7B <em>(ours)</em> </td>
           <td>πŸ₯‡56.78 </td>
            <td>πŸ₯‡72.35 </td>
            <td>64.09 </td>
            <td>πŸ₯‡45.92 </td>
           <td>πŸ₯‡64.10 </td>
            <td>πŸ₯‡85.05 </td>
           <td>πŸ₯ˆ78.09 </td>
            <td>43.77 </td>
            <td style="background-color: #d0d0d0;">πŸ†63.77 </td>
        </tr>
    </tbody>
</table>
   </div>         
   
---
## 🎯 Qualitative Evaluation
The qualitative evaluation showcases AIN's advanced capabilities in handling diverse, complex tasks, including OCR, medical imaging, remote sensing, and cultural-specific understanding, with remarkable precision and contextual relevance. Unlike GPT-4o and LLaVA, AIN demonstrates superior performance in identifying intricate details and maintaining accuracy across varied query formats and multi-domain challenges.

<div align="center">
  <img src="assets_hf/qualitative.png" width="75%" alt="qualitative" />
     <h6>
       <em>  <b>Figure 3.</b> Qualitative examples showcasing AIN-7B’s capabilities across various domains, including general VQA, OCR & Document Understanding, Remote Sensing, Medical Imaging, Agricultural Understanding, and Cultural-Specific tasks. </em> 
    </h6>
</div>

---
## 🧐 Data Verification and Toxicity Filtering
A multi-step verification pipeline was implemented to ensure high-quality translations and safe visual data. Translation accuracy was assessed through human evaluation, where native Arabic speakers rated outputs against reference translations, and semantic similarity checks were conducted using **LaBSE**. Additionally, translated samples were reverse-translated and validated using **BLEU, METEOR, and ROUGE scores** to measure correctness, correlation, and overlap. For visual data, toxicity filtering was applied using **LLavaGuard’s safety policies and GPT-4o**, identifying and removing unsafe content related to violence, substance abuse, and harmful imagery, ensuring compliance with ethical AI standards.

<p align="center">
   <img src="assets_hf/verify_pipeline.png" width="75%" alt="verify"  style="margin-right: 2px";/>
    <h6>
       <em>  <b>Figure 4.</b> Data verification and filtering pipeline for textual and visual data, ensuring high-quality training data through semantic similarity checks, translation quality evaluations, and toxicity screening for safety compliance. </em> 
    </h6>
</p> 
<p align="center">
   <img src="assets_hf/toxicity.png" width=48%" alt="verify"  style="margin-right: 2px";/>
    <h6>
       <em>  <b>Figure 5.</b> Distribution of visual data toxicity filtering results, showing that 95% of the data is classified as safe, while 5% is identified as unsafe due to categories like weapons or substance abuse, violence, and animal cruelty. </em> 
   </h6>
</p> 

---

## πŸ”’ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.


## πŸ’¬ Contact us
For questions or suggestions, feel free to reach out to us on [GitHub Discussions](https://github.com/mbzuai-oryx/AIN/discussions).

---

If you use AIN in your research, please cite our work as follows: 

```
@misc{heakl2025ainarabicinclusivelarge,
      title={AIN: The Arabic INclusive Large Multimodal Model}, 
      author={Ahmed Heakl and Sara Ghaboura and Omkar Thawkar and Fahad Shahbaz Khan and Hisham Cholakkal and Rao Muhammad Anwer and Salman Khan},
      year={2025},
      eprint={2502.00094},
      url={https://arxiv.org/abs/2502.00094}, 
```