File size: 12,070 Bytes
2bff5cb 539f2aa 2bff5cb 35cb587 2bff5cb 539f2aa b6ec598 eb434af 539f2aa 2bff5cb f4eb07a 2bff5cb 35cb587 539f2aa 2bff5cb 539f2aa f4eb07a 35cb587 f4eb07a 539f2aa 974122b 9d202ad 539f2aa b6ec598 539f2aa b6ec598 539f2aa f4eb07a 539f2aa f4eb07a 539f2aa b6ec598 539f2aa 35cb587 539f2aa b500195 539f2aa 35cb587 539f2aa b6ec598 539f2aa 35cb587 539f2aa f4eb07a 2bff5cb 77338b3 2bff5cb 539f2aa 2bff5cb 35cb587 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
---
license: mit
language:
- en
- ar
base_model:
- qwen2-VL-7B
pipeline_tag: image-text-to-text
tags:
- LMM
- Arabic
---
<div style="display: flex; align-items: center;">
<img src="assets_hf/AIN.png" width="10%" alt="logo" style="margin-right: 10px;" />
<h1 style="margin: 0; font-size: 28px;";">AIN: The Arabic INclusive Large Multimodal Model</h1>
</div>
[Ahmed Heakl](https://huggingface.co/ahmedheakl) <sup> * </sup>
[Sara Ghaboura](https://huggingface.co/SLMLAH) <sup> * </sup>
[Omkar Thawakar](https://omkarthawakar.github.io)
[Fahad Shahbaz Khan](https://scholar.google.com/citations?hl=en&user=zvaeYnUAAAAJ)
[Hisham Cholakkal](https://scholar.google.com/citations?hl=en&user=bZ3YBRcAAAAJ)
[Rao M. Anwer](https://scholar.google.com/citations?hl=en&user=_KlvMVoAAAAJ)
[Salman Khan](https://scholar.google.com/citations?hl=en&user=M59O9lkAAAAJ)
<br>
<em> <sup> *Equal Contribution </sup> </em>
<br>
#### **Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE**
[](https://arxiv.org/abs/2502.00094)
[](https://mbzuai-oryx.github.io/AIN/)
[](https://github.com/mbzuai-oryx/AIN/issues)
[](https://github.com/mbzuai-oryx/AIN/stargazers)
[](https://github.com/mbzuai-oryx/AIN/blob/main/LICENSE)
---
https://github.com/mbzuai-oryx/AIN
<div class="abstract-container">
<h2>Abstract</h2>
<div class="abstract-content">
<p>
Amid the swift progress of large language models (LLMs) and their evolution into large multimodal models (LMMs), significant strides have been made in high-resource languages such as English and Chinese. While Arabic LLMs have seen notable progress, Arabic LMMs remain largely unexplored, often narrowly focusing on a few specific aspects of the language and visual understanding. To bridge this gap, we introduce <b><em>AIN - the Arabic Inclusive Multimodal Model-</em></b> designed to excel across diverse domains.
AIN is an English-Arabic <b>bilingual LMM</b> designed to excel in English and Arabic, leveraging carefully constructed <b>3.6 million</b> high-quality Arabic-English multimodal data samples. AIN demonstrates state-of-the-art Arabic performance, while also possessing strong English-language visual capabilities.
</p>
</div>
</div>
## π Key Features
- The **first Arabic-centric inclusive Large Multimodal Model (LMM)** trained on **3.6M samples**.
- Includes **35% authentic Arabic data** within its Arabic data subset.
- Achieves **superior performance compared to open- and closed-source models** (e.g., GPT-4o) and open-source models (e.g., Qwen2-VL-7B) across tasks such as OCR and specialized domains.
- Demonstrates **robust bilingual capabilities** (Arabic/English), **validated** through **comprehensive testing** and **human evaluation** across 17 Arab countries.
- Exhibits **advanced cultural understanding** and domain expertise in fields such as **medical imaging**, **agriculture**, and **scientific visualization**.
<p align="center">
<img src="assets_hf/intro_bar.png" width="70%" alt="intro_bar" style="margin-right: 2px";/>
<h6>
<em> <b>Figure 1.</b> Comparative performance of AIN-7B against other models across key domains, including OCR & Document Understanding, Remote Sensing, Agricultural Understanding, and overall performance across all domains. </em>
</h6>
</p>
<p align="center" >
<img src="assets_hf/radar_chart.png" width="52%" alt="radar_chart" style="margin-right: 2px";/>
<h6>
<em> <b>Figure 2.</b> showcases a comprehensive performance analysis of AIN-7B across CAMEL-Bench domains, comparing it with prominent closed-source models as well as open-source counterparts. <strong>OCR:</strong> "OCR & Document Understanding", <strong>Video:</strong> "General Video & Multi-Image Understanding", <strong>RS:</strong> "Remote Sensing Understanding", <strong>CDT:</strong> "Chart, Diagram & Table Understanding", <strong>Agro.:</strong> "Agricultural Image Understanding", <strong>Cultural:</strong> "Cultural-Specific Understanding", <strong>Medical:</strong> "Medical Image Understanding".
</em>
</h6>
---
## βοΈ Quantitative Evaluation and Results
AIN demonstrates state-of-the-art performance across diverse domains, surpassing both open- and closed-source models. Notably, it achieves an aggregate performance score of 63.77%, with significant gains in OCR, remote sensing, and agricultural image understanding.
<div align="center" >
<table>
<caption>
<h6>
<strong>Table 1. Performance comparison of AIN and different closed- and open-source LMMs across CAMEL-Bench domains.</strong>
<br> <em>Best performance is marked with π₯; second-best is π₯.</em>
<strong>OCR</strong>: "OCR & Document Understanding",
<strong>Video</strong>: "General Video & Multi-Image Understanding",
<strong>RS</strong>: "Remote Sensing Understanding",
<strong>CDT</strong>: "Chart, Diagram & Table Understanding",
<strong>Agro.</strong>: "Agricultural Image Understanding",
<strong>Cult.</strong>: "Cultural-Specific Understanding",
<strong>Med.</strong>: "Medical Image Understanding".
</h6>
</caption>
<thead>
<tr style="background-color: #e0e0e0;">
<th>Models</th>
<th>VQA</th>
<th>OCR</th>
<th>Video</th>
<th>RS</th>
<th>CDT</th>
<th>Agro.</th>
<th>Cult.</th>
<th>Med.</th>
<th style="background-color: #d0d0d0;">Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT-4o</td>
<td>π₯55.15</td>
<td>π₯54.98</td>
<td>π₯69.65</td>
<td>π₯27.36</td>
<td>π₯62.35</td>
<td>π₯80.75</td>
<td>π₯80.86</td>
<td>π₯49.91</td>
<td style="background-color: #d0d0d0;">π₯60.13</td>
</tr>
<tr>
<td>GPT-4o-mini</td>
<td>48.83</td>
<td>39.38</td>
<td>π₯66.28</td>
<td>16.93</td>
<td>56.37</td>
<td>78.80</td>
<td>65.92</td>
<td>π₯47.37</td>
<td style="background-color: #d0d0d0;">52.49</td>
</tr>
<tr>
<td>Gemini-1.5-Pro</td>
<td>46.68</td>
<td>28.68</td>
<td>42.95</td>
<td>17.07</td>
<td>47.06</td>
<td>72.14</td>
<td>56.24</td>
<td>33.78</td>
<td style="background-color: #d0d0d0;">52.38</td>
</tr>
<tr>
<td>Gemini-1.5-flash</td>
<td>45.59</td>
<td>27.58</td>
<td>53.31</td>
<td>14.95</td>
<td>48.26</td>
<td>76.07</td>
<td>46.54</td>
<td>42.87</td>
<td style="background-color: #d0d0d0;">44.40</td>
</tr>
<tr>
<td>InternVL-8B </td>
<td>30.41 </td>
<td>15.91 </td>
<td>51.42 </td>
<td>5.36 </td>
<td>30.27 </td>
<td>44.47 </td>
<td>20.88 </td>
<td>29.48 </td>
<td style="background-color: #d0d0d0;">28.52 </td>
</tr>
<tr>
<td>InternVL2.5-1B </td>
<td>27.22 </td>
<td>19.45 </td>
<td>38.20 </td>
<td>3.39 </td>
<td>30.75 </td>
<td>39.53 </td>
<td>35.68 </td>
<td>21.27 </td>
<td style="background-color: #d0d0d0;">26.94 </td>
</tr>
<tr>
<td>Qwen-VL-2B </td>
<td>41.02 </td>
<td>22.93 </td>
<td>38.90 </td>
<td>12.56 </td>
<td>27.83 </td>
<td>52.02 </td>
<td>34.28 </td>
<td>29.12 </td>
<td style="background-color: #d0d0d0;">32.33 </td>
</tr>
<tr>
<td>AIN-7B <em>(ours)</em> </td>
<td>π₯56.78 </td>
<td>π₯72.35 </td>
<td>64.09 </td>
<td>π₯45.92 </td>
<td>π₯64.10 </td>
<td>π₯85.05 </td>
<td>π₯78.09 </td>
<td>43.77 </td>
<td style="background-color: #d0d0d0;">π63.77 </td>
</tr>
</tbody>
</table>
</div>
---
## π― Qualitative Evaluation
The qualitative evaluation showcases AIN's advanced capabilities in handling diverse, complex tasks, including OCR, medical imaging, remote sensing, and cultural-specific understanding, with remarkable precision and contextual relevance. Unlike GPT-4o and LLaVA, AIN demonstrates superior performance in identifying intricate details and maintaining accuracy across varied query formats and multi-domain challenges.
<div align="center">
<img src="assets_hf/qualitative.png" width="75%" alt="qualitative" />
<h6>
<em> <b>Figure 3.</b> Qualitative examples showcasing AIN-7Bβs capabilities across various domains, including general VQA, OCR & Document Understanding, Remote Sensing, Medical Imaging, Agricultural Understanding, and Cultural-Specific tasks. </em>
</h6>
</div>
---
## π§ Data Verification and Toxicity Filtering
A multi-step verification pipeline was implemented to ensure high-quality translations and safe visual data. Translation accuracy was assessed through human evaluation, where native Arabic speakers rated outputs against reference translations, and semantic similarity checks were conducted using **LaBSE**. Additionally, translated samples were reverse-translated and validated using **BLEU, METEOR, and ROUGE scores** to measure correctness, correlation, and overlap. For visual data, toxicity filtering was applied using **LLavaGuardβs safety policies and GPT-4o**, identifying and removing unsafe content related to violence, substance abuse, and harmful imagery, ensuring compliance with ethical AI standards.
<p align="center">
<img src="assets_hf/verify_pipeline.png" width="75%" alt="verify" style="margin-right: 2px";/>
<h6>
<em> <b>Figure 4.</b> Data verification and filtering pipeline for textual and visual data, ensuring high-quality training data through semantic similarity checks, translation quality evaluations, and toxicity screening for safety compliance. </em>
</h6>
</p>
<p align="center">
<img src="assets_hf/toxicity.png" width=48%" alt="verify" style="margin-right: 2px";/>
<h6>
<em> <b>Figure 5.</b> Distribution of visual data toxicity filtering results, showing that 95% of the data is classified as safe, while 5% is identified as unsafe due to categories like weapons or substance abuse, violence, and animal cruelty. </em>
</h6>
</p>
---
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## π¬ Contact us
For questions or suggestions, feel free to reach out to us on [GitHub Discussions](https://github.com/mbzuai-oryx/AIN/discussions).
---
If you use AIN in your research, please cite our work as follows:
```
@misc{heakl2025ainarabicinclusivelarge,
title={AIN: The Arabic INclusive Large Multimodal Model},
author={Ahmed Heakl and Sara Ghaboura and Omkar Thawkar and Fahad Shahbaz Khan and Hisham Cholakkal and Rao Muhammad Anwer and Salman Khan},
year={2025},
eprint={2502.00094},
url={https://arxiv.org/abs/2502.00094},
``` |