Update README.md
Browse files
README.md
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
license: mit
|
3 |
language:
|
4 |
- en
|
|
|
5 |
base_model:
|
6 |
- qwen2-VL-7B
|
7 |
pipeline_tag: visual-question-answering
|
@@ -10,7 +11,11 @@ tags:
|
|
10 |
- Arabic
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
|
15 |
[Ahmed Heakl](https://huggingface.co/ahmedheakl) <sup> * </sup>
|
16 |
[Sara Ghaboura](https://huggingface.co/SLMLAH) <sup> * </sup>
|
@@ -23,45 +28,222 @@ tags:
|
|
23 |
<em> <sup> *Equal Contribution </sup> </em>
|
24 |
<br>
|
25 |
#### **Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE**
|
26 |
-
[](https://arxiv.org/abs/2502.00094)
|
27 |
-
[](https://mbzuai-oryx.github.io/AIN/)
|
28 |
-
[](https://github.com/mbzuai-oryx/AIN/issues)
|
29 |
-
[](https://github.com/mbzuai-oryx/AIN/stargazers)
|
30 |
[](https://github.com/mbzuai-oryx/AIN/blob/main/LICENSE)
|
31 |
|
32 |
-
|
33 |
|
34 |
-
<br>
|
35 |
-
<br>
|
36 |
-
     
|
37 |
-
<img src="https://github.com/user-attachments/assets/29421075-ec74-4843-ad8a-8bd9dfd535d6" alt="chatbot" width="30px" />
|
38 |
-
  <a href="https://huggingface.co/spaces/ahmedheakl/AIN-Arabic-VLM" target="_blank">AIN Chatbot</a>
|
39 |
-
<img src="https://github.com/user-attachments/assets/451fd639-7cb7-4e77-b7ed-c3678bf980e3" alt="telegram" width="25px" />
|
40 |
-
  <a href="https://t.me/arabicvlm_bot" target="_blank">AIN Telegram</a>
|
41 |
-
<img src="https://github.com/user-attachments/assets/35bd262d-55d1-45e9-8382-e44567b09102" alt="WhatsApp" width="25px" />
|
42 |
-
  <a href="https://wa.me/46738645096" target="_blank">AIN WhatsApp</a>
|
43 |
-
<br>
|
44 |
-
<br>
|
45 |
-
</div>
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
---
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
---
|
53 |
|
54 |
## License
|
55 |
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
56 |
-
|
57 |
-
<br>
|
58 |
|
59 |
## π¬ Contact us
|
60 |
For questions or suggestions, feel free to reach out to us on [GitHub Discussions](https://github.com/mbzuai-oryx/AIN/discussions).
|
61 |
|
62 |
---
|
63 |
|
64 |
-
|
65 |
If you use AIN in your research, please cite our work as follows:
|
66 |
|
67 |
```
|
|
|
2 |
license: mit
|
3 |
language:
|
4 |
- en
|
5 |
+
- ar
|
6 |
base_model:
|
7 |
- qwen2-VL-7B
|
8 |
pipeline_tag: visual-question-answering
|
|
|
11 |
- Arabic
|
12 |
---
|
13 |
|
14 |
+
|
15 |
+
<div style="display: flex; align-items: center;">
|
16 |
+
<img src="assets_hf/AIN.png" width="5%" alt="logo" style="margin-right: 10px;" />
|
17 |
+
<h1 style="margin: 0; font-size: 32px;";">AIN: The Arabic INclusive Large Multimodal Model</h1>
|
18 |
+
</div>
|
19 |
|
20 |
[Ahmed Heakl](https://huggingface.co/ahmedheakl) <sup> * </sup>
|
21 |
[Sara Ghaboura](https://huggingface.co/SLMLAH) <sup> * </sup>
|
|
|
28 |
<em> <sup> *Equal Contribution </sup> </em>
|
29 |
<br>
|
30 |
#### **Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE**
|
31 |
+
[](https://arxiv.org/abs/2502.00094)
|
32 |
+
[](https://mbzuai-oryx.github.io/AIN/)
|
33 |
+
[](https://github.com/mbzuai-oryx/AIN/issues)
|
34 |
+
[](https://github.com/mbzuai-oryx/AIN/stargazers)
|
35 |
[](https://github.com/mbzuai-oryx/AIN/blob/main/LICENSE)
|
36 |
|
37 |
+
---
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
<div class="abstract-container">
|
41 |
+
<h2>Abstract</h2>
|
42 |
+
<div class="abstract-content">
|
43 |
+
<p>
|
44 |
+
Amid the swift progress of large language models (LLMs) and their evolution into large multimodal models (LMMs), significant strides have been made in high-resource languages such as English and Chinese. While Arabic LLMs have seen notable progress, Arabic LMMs remain largely unexplored, often narrowly focusing on a few specific aspects of the language and visual understanding. To bridge this gap, we introduce <b><em>AIN - the Arabic Inclusive Multimodal Model-</em></b> designed to excel across diverse domains.
|
45 |
+
AIN is an English-Arabic <b>bilingual LMM</b> designed to excel in English and Arabic, leveraging carefully constructed <b>3.6 million</b> high-quality Arabic-English multimodal data samples. AIN demonstrates state-of-the-art Arabic performance, while also possessing strong English-language visual capabilities.
|
46 |
+
</p>
|
47 |
+
</div>
|
48 |
+
</div>
|
49 |
|
50 |
|
51 |
+
|
52 |
+
## π Key Features
|
53 |
+
- The **first Arabic-centric inclusive Large Multimodal Model (LMM)** trained on **3.6M samples**.
|
54 |
+
- Includes **35% authentic Arabic data** within its Arabic data subset.
|
55 |
+
- Achieves **superior performance compared to open- and closed-source models** (e.g., GPT-4o) and open-source models (e.g., Qwen2-VL-7B) across tasks such as OCR and specialized domains.
|
56 |
+
- Demonstrates **robust bilingual capabilities** (Arabic/English), **validated** through **comprehensive testing** and **human evaluation** across 17 Arab countries.
|
57 |
+
- Exhibits **advanced cultural understanding** and domain expertise in fields such as **medical imaging**, **agriculture**, and **scientific visualization**.
|
58 |
+
|
59 |
+
|
60 |
+
<p align="center">
|
61 |
+
<img src="assets_hf/intro_bar.png" width="50%" alt="intro_bar" style="margin-right: 2px";/>
|
62 |
+
<h6>
|
63 |
+
<em> <b>Figure 1.</b> Comparative performance of AIN-7B against other models across key domains, including OCR & Document Understanding, Remote Sensing, Agricultural Understanding, and overall performance across all domains. </em>
|
64 |
+
</h6>
|
65 |
+
</p>
|
66 |
+
|
67 |
+
<p align="center" >
|
68 |
+
<img src="assets_hf/radar_chart.png" width="35%" alt="radar_chart" style="margin-right: 2px";/>
|
69 |
+
<h6>
|
70 |
+
<em> <b>Figure 2.</b> showcases a comprehensive performance analysis of AIN-7B across CAMEL-Bench domains, comparing it with prominent closed-source models as well as open-source counterparts. <strong>OCR:</strong> "OCR & Document Understanding", <strong>Video:</strong> "General Video & Multi-Image Understanding", <strong>RS:</strong> "Remote Sensing Understanding", <strong>CDT:</strong> "Chart, Diagram & Table Understanding", <strong>Agro.:</strong> "Agricultural Image Understanding", <strong>Cultural:</strong> "Cultural-Specific Understanding", <strong>Medical:</strong> "Medical Image Understanding".
|
71 |
+
</em>
|
72 |
+
</h6>
|
73 |
+
|
74 |
---
|
75 |
+
## βοΈ Quantitative Evaluation and Results
|
76 |
+
AIN demonstrates state-of-the-art performance across diverse domains, surpassing both open- and closed-source models. Notably, it achieves an aggregate performance score of 63.77%, with significant gains in OCR, remote sensing, and agricultural image understanding.
|
77 |
|
78 |
+
<div align="center" >
|
79 |
+
<table>
|
80 |
+
<caption>
|
81 |
+
<h6>
|
82 |
+
<strong>Table 1. Performance comparison of AIN and different closed- and open-source LMMs across CAMEL-Bench domains.</strong>
|
83 |
+
<br> <em>Best performance is marked with π₯; second-best is π₯.</em>
|
84 |
+
<strong>OCR</strong>: "OCR & Document Understanding",
|
85 |
+
<strong>Video</strong>: "General Video & Multi-Image Understanding",
|
86 |
+
<strong>RS</strong>: "Remote Sensing Understanding",
|
87 |
+
<strong>CDT</strong>: "Chart, Diagram & Table Understanding",
|
88 |
+
<strong>Agro.</strong>: "Agricultural Image Understanding",
|
89 |
+
<strong>Cult.</strong>: "Cultural-Specific Understanding",
|
90 |
+
<strong>Med.</strong>: "Medical Image Understanding".
|
91 |
+
</h6>
|
92 |
+
</caption>
|
93 |
+
<thead>
|
94 |
+
<tr style="background-color: #e0e0e0;">
|
95 |
+
<th>Models</th>
|
96 |
+
<th>VQA</th>
|
97 |
+
<th>OCR</th>
|
98 |
+
<th>Video</th>
|
99 |
+
<th>RS</th>
|
100 |
+
<th>CDT</th>
|
101 |
+
<th>Agro.</th>
|
102 |
+
<th>Cult.</th>
|
103 |
+
<th>Med.</th>
|
104 |
+
<th style="background-color: #d0d0d0;">Total</th>
|
105 |
+
</tr>
|
106 |
+
</thead>
|
107 |
+
<tbody>
|
108 |
+
<tr>
|
109 |
+
<td>GPT-4o</td>
|
110 |
+
<td>π₯55.15</td>
|
111 |
+
<td>π₯54.98</td>
|
112 |
+
<td>π₯69.65</td>
|
113 |
+
<td>π₯27.36</td>
|
114 |
+
<td>π₯62.35</td>
|
115 |
+
<td>π₯80.75</td>
|
116 |
+
<td>π₯80.86</td>
|
117 |
+
<td>π₯49.91</td>
|
118 |
+
<td style="background-color: #d0d0d0;">π₯60.13</td>
|
119 |
+
</tr>
|
120 |
+
<tr>
|
121 |
+
<td>GPT-4o-mini</td>
|
122 |
+
<td>48.83</td>
|
123 |
+
<td>39.38</td>
|
124 |
+
<td>π₯66.28</td>
|
125 |
+
<td>16.93</td>
|
126 |
+
<td>56.37</td>
|
127 |
+
<td>78.80</td>
|
128 |
+
<td>65.92</td>
|
129 |
+
<td>π₯47.37</td>
|
130 |
+
<td style="background-color: #d0d0d0;">52.49</td>
|
131 |
+
</tr>
|
132 |
+
<tr>
|
133 |
+
<td>Gemini-1.5-Pro</td>
|
134 |
+
<td>46.68</td>
|
135 |
+
<td>28.68</td>
|
136 |
+
<td>42.95</td>
|
137 |
+
<td>17.07</td>
|
138 |
+
<td>47.06</td>
|
139 |
+
<td>72.14</td>
|
140 |
+
<td>56.24</td>
|
141 |
+
<td>33.78</td>
|
142 |
+
<td style="background-color: #d0d0d0;">52.38</td>
|
143 |
+
</tr>
|
144 |
+
<tr>
|
145 |
+
<td>Gemini-1.5-flash</td>
|
146 |
+
<td>45.59</td>
|
147 |
+
<td>27.58</td>
|
148 |
+
<td>53.31</td>
|
149 |
+
<td>14.95</td>
|
150 |
+
<td>48.26</td>
|
151 |
+
<td>76.07</td>
|
152 |
+
<td>46.54</td>
|
153 |
+
<td>42.87</td>
|
154 |
+
<td style="background-color: #d0d0d0;">44.40</td>
|
155 |
+
</tr>
|
156 |
+
<tr>
|
157 |
+
<td>InternVL-8B </td>
|
158 |
+
<td>30.41 </td>
|
159 |
+
<td>15.91 </td>
|
160 |
+
<td>51.42 </td>
|
161 |
+
<td>5.36 </td>
|
162 |
+
<td>30.27 </td>
|
163 |
+
<td>44.47 </td>
|
164 |
+
<td>20.88 </td>
|
165 |
+
<td>29.48 </td>
|
166 |
+
<td style="background-color: #d0d0d0;">28.52 </td>
|
167 |
+
</tr>
|
168 |
+
<tr>
|
169 |
+
<td>InternVL2.5-1B </td>
|
170 |
+
<td>27.22 </td>
|
171 |
+
<td>19.45 </td>
|
172 |
+
<td>38.20 </td>
|
173 |
+
<td>3.39 </td>
|
174 |
+
<td>30.75 </td>
|
175 |
+
<td>39.53 </td>
|
176 |
+
<td>35.68 </td>
|
177 |
+
<td>21.27 </td>
|
178 |
+
<td style="background-color: #d0d0d0;">26.94 </td>
|
179 |
+
</tr>
|
180 |
+
<tr>
|
181 |
+
<td>Qwen-VL-2B </td>
|
182 |
+
<td>41.02 </td>
|
183 |
+
<td>22.93 </td>
|
184 |
+
<td>38.90 </td>
|
185 |
+
<td>12.56 </td>
|
186 |
+
<td>27.83 </td>
|
187 |
+
<td>52.02 </td>
|
188 |
+
<td>34.28 </td>
|
189 |
+
<td>29.12 </td>
|
190 |
+
<td style="background-color: #d0d0d0;">32.33 </td>
|
191 |
+
</tr>
|
192 |
+
<tr>
|
193 |
+
<td>AIN-7B <em>(ours)</em> </td>
|
194 |
+
<td>π₯56.78 </td>
|
195 |
+
<td>π₯72.35 </td>
|
196 |
+
<td>64.09 </td>
|
197 |
+
<td>π₯45.92 </td>
|
198 |
+
<td>π₯64.10 </td>
|
199 |
+
<td>π₯85.05 </td>
|
200 |
+
<td>π₯78.09 </td>
|
201 |
+
<td>43.77 </td>
|
202 |
+
<td style="background-color: #d0d0d0;">π63.77 </td>
|
203 |
+
</tr>
|
204 |
+
</tbody>
|
205 |
+
</table>
|
206 |
+
</div>
|
207 |
+
|
208 |
+
---
|
209 |
+
## π― Qualitative Evaluation
|
210 |
+
The qualitative evaluation showcases AIN's advanced capabilities in handling diverse, complex tasks, including OCR, medical imaging, remote sensing, and cultural-specific understanding, with remarkable precision and contextual relevance. Unlike GPT-4o and LLaVA, AIN demonstrates superior performance in identifying intricate details and maintaining accuracy across varied query formats and multi-domain challenges.
|
211 |
+
|
212 |
+
<div align="center">
|
213 |
+
<img src="assets_hf/qualitative.png" width="50%" alt="qualitative" />
|
214 |
+
<h6>
|
215 |
+
<em> <b>Figure 3.</b> Qualitative examples showcasing AIN-7Bβs capabilities across various domains, including general VQA, OCR & Document Understanding, Remote Sensing, Medical Imaging, Agricultural Understanding, and Cultural-Specific tasks. </em>
|
216 |
+
</h6>
|
217 |
+
</div>
|
218 |
+
|
219 |
+
---
|
220 |
+
## π§ Data Verification and Toxicity Filtering
|
221 |
+
A multi-step verification pipeline was implemented to ensure high-quality translations and safe visual data. Translation accuracy was assessed through human evaluation, where native Arabic speakers rated outputs against reference translations, and semantic similarity checks were conducted using **LaBSE**. Additionally, translated samples were reverse-translated and validated using **BLEU, METEOR, and ROUGE scores** to measure correctness, correlation, and overlap. For visual data, toxicity filtering was applied using **LLavaGuardβs safety policies and GPT-4o**, identifying and removing unsafe content related to violence, substance abuse, and harmful imagery, ensuring compliance with ethical AI standards.
|
222 |
+
|
223 |
+
<p align="center">
|
224 |
+
<img src="assets_hf/verify_pipeline.png" width="45%" alt="verify" style="margin-right: 2px";/>
|
225 |
+
<h6>
|
226 |
+
<em> <b>Figure 4.</b> Data verification and filtering pipeline for textual and visual data, ensuring high-quality training data through semantic similarity checks, translation quality evaluations, and toxicity screening for safety compliance. </em>
|
227 |
+
</h6>
|
228 |
+
</p>
|
229 |
+
<p align="center">
|
230 |
+
<img src="assets_hf/toxicity.png" width=30%" alt="verify" style="margin-right: 2px";/>
|
231 |
+
<h6>
|
232 |
+
<em> <b>Figure 5.</b> Distribution of visual data toxicity filtering results, showing that 95% of the data is classified as safe, while 5% is identified as unsafe due to categories like weapons or substance abuse, violence, and animal cruelty. </em>
|
233 |
+
</h6>
|
234 |
+
</p>
|
235 |
|
236 |
---
|
237 |
|
238 |
## License
|
239 |
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
240 |
+
|
|
|
241 |
|
242 |
## π¬ Contact us
|
243 |
For questions or suggestions, feel free to reach out to us on [GitHub Discussions](https://github.com/mbzuai-oryx/AIN/discussions).
|
244 |
|
245 |
---
|
246 |
|
|
|
247 |
If you use AIN in your research, please cite our work as follows:
|
248 |
|
249 |
```
|