Edit model card

Lily-MoE-2x7b

Lily-MoE-2x7b is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
gate_mode: hidden # one of "hidden", "cheap_embed", or "random"
dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
experts:
  - source_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
    positive_prompts:
    - "chat"
    - "assistant"
    - "tell me"
    - "explain"
    - "code"
    - "programming"
  - source_model: LunaticPython161/CyberWitch-7B
    positive_prompts:
    - "solve"
    - "count"
    - "math"
    - "mathematics"
    - "algorithm"
    - "cypher"
    - "cybersecurity"
    - "penetration testing"
    - "red team"
    - "blue team"
    - "hacking"

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "LunaticPython161/Lily-MoE-2x7b"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
16
Safetensors
Model size
12.9B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LunaticPython161/Lily-MoE-2x7b