Developer's note

Please do download and try out the model locally or on colab, as it helps huggingface determine that this model is important enough to have a serverless API for everyone to use. Also, the model is totally safe for everyone to use. The only reason one of the files has been marked unsafe because it is a pickle file.Thank you all for so much support !!

Overview

This model is a fine-tuned version of google-bert/bert-base-uncased on this Kaggle dataset. It achieves the following results on the evaluation set:

  • Macro f1: 89.44%
  • Weighted f1: 93.15%
  • Accuracy: 93.80%
  • Balanced accuracy: 90.42%

Model description

This finetuned version of google-bert/bert-base-uncased excels at detecting the crime type from the description of the crime. It has 34 labels.

Training and evaluation data

  • eval_macro f1: 89.44%
  • eval_weighted f1: 93.15%
  • eval_accuracy: 93.79%
  • eval_balanced accuracy: 90.42%

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Macro f1 Weighted f1 Accuracy Balanced accuracy
0.1859 1.0 5538 0.1297 0.8561 0.9249 0.9366 0.8571
0.1281 2.0 11076 0.1260 0.8702 0.9248 0.9369 0.8740
0.1279 3.0 16614 0.1251 0.8728 0.9314 0.9380 0.8749
0.1272 4.0 22152 0.1276 0.8652 0.9247 0.9367 0.8655
0.1266 5.0 27690 0.1256 0.8685 0.9252 0.9345 0.8724
0.1284 6.0 33228 0.1264 0.8668 0.9252 0.9345 0.8724
0.1272 7.0 38766 0.1247 0.8739 0.9313 0.9379 0.8748
0.1262 8.0 44304 0.1258 0.8892 0.9246 0.9366 0.9024
0.1263 9.0 49842 0.1251 0.9038 0.9310 0.9378 0.9041
0.1267 10.0 55380 0.1244 0.8897 0.9253 0.9345 0.9018
0.1271 11.0 60918 0.1251 0.8951 0.9325 0.9371 0.9036
0.1268 12.0 66456 0.1248 0.8944 0.9315 0.9380 0.9042
0.1254 13.0 71994 0.1247 0.9038 0.9314 0.9381 0.9043
0.126 14.0 77532 0.1263 0.8944 0.9314 0.9379 0.9042
0.1261 15.0 83070 0.1274 0.8891 0.9250 0.9348 0.9020
0.1253 16.0 88608 0.1241 0.8944 0.9315 0.9380 0.9042
0.1251 17.0 94146 0.1244 0.9042 0.9314 0.9380 0.9042
0.125 18.0 99684 0.1249 0.9041 0.9314 0.9380 0.9043
0.125 19.0 105222 0.1245 0.8942 0.9312 0.9380 0.9042
0.1257 20.0 110760 0.1248 0.9041 0.9313 0.9379 0.9042
0.125 21.0 116298 0.1248 0.9000 0.9254 0.9344 0.9018
0.1248 22.0 121836 0.1244 0.9041 0.9313 0.9379 0.9042
0.1246 23.0 127374 0.1245 0.9042 0.9315 0.9380 0.9042
0.1247 24.0 132912 0.1242 0.8943 0.9314 0.9380 0.9043
0.1245 25.0 138450 0.1242 0.9042 0.9315 0.9380 0.9042
0.1245 26.0 143988 0.1245 0.9042 0.9314 0.9381 0.9043
0.1245 27.0 149526 0.1242 0.8944 0.9314 0.9381 0.9043
0.1244 28.0 155064 0.1242 0.9336 0.9315 0.9381 0.9337
0.1243 29.0 160602 0.1243 0.8944 0.9314 0.9381 0.9043
0.1243 30.0 166140 0.1243 0.8944 0.9314 0.9381 0.9043

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
38
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Luna-Skywalker/BERT-crime-analysis

Finetuned
(2307)
this model